awacke1 commited on
Commit
0e3f5d1
·
verified ·
1 Parent(s): 51f6d3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -35
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import pandas_profiling as pp
2
  import pandas as pd
3
  import tensorflow as tf
4
 
@@ -44,33 +44,6 @@ CHOICES = ["SNOMED", "LOINC", "CQM"]
44
  JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""
45
 
46
 
47
- def profile_dataset(dataset=datasetSNOMED, username="awacke1", token=HF_TOKEN, dataset_name="awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv"):
48
- df = pd.read_csv(dataset.Description)
49
- if len(df.columns) <= 15:
50
- profile = pp.ProfileReport(df, title=f"{dataset_name} Report")
51
- else:
52
- profile = pp.ProfileReport(df, title=f"{dataset_name} Report", minimal = True)
53
-
54
- repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
55
-
56
- profile.to_file("./index.html")
57
-
58
- upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
59
- readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
60
- with open("README.md", "w+") as f:
61
- f.write(readme)
62
- upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
63
- return f"Your dataset report will be ready at {repo_url}"
64
-
65
- #def lowercase_title(example):
66
- # return {"Description": example[title].lower()}
67
-
68
- # demonstrate map function of dataset
69
- #JSONOBJ_MAP=datasetLOINC.map(lowercase_title)
70
- #JSONOBJ_MAP=datasetLOINC.filter(lambda example: example["Description"].startswith("Mental health"))
71
-
72
-
73
-
74
 
75
  def concatenate_text(examples):
76
  return {
@@ -180,13 +153,7 @@ def fn( text1, text2, num, slider1, slider2, single_checkbox,
180
  print(start_with_searchTermLOINC )
181
  print(start_with_searchTermSNOMED )
182
  print(start_with_searchTermCQM)
183
-
184
- #print(start_with_searchTermLOINC["train"][0] )
185
- #print(start_with_searchTermSNOMED["train"][0] )
186
- #print(start_with_searchTermCQM["train"][0] )
187
-
188
- #returnMsg=profile_dataset()
189
- #print(returnMsg)
190
 
191
  # try:
192
  #top1matchLOINC = json.loads(start_with_searchTermLOINC['train'])
 
1
+ # import pandas_profiling as pp
2
  import pandas as pd
3
  import tensorflow as tf
4
 
 
44
  JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""
45
 
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  def concatenate_text(examples):
49
  return {
 
153
  print(start_with_searchTermLOINC )
154
  print(start_with_searchTermSNOMED )
155
  print(start_with_searchTermCQM)
156
+
 
 
 
 
 
 
157
 
158
  # try:
159
  #top1matchLOINC = json.loads(start_with_searchTermLOINC['train'])