Spaces:
Paused
Paused
File size: 6,628 Bytes
69777eb 4d8b8e1 297a56e 4d8b8e1 297a56e 4d8b8e1 297a56e 8c61e72 e7d4b75 8c61e72 f09f258 8c61e72 f09f258 4d8b8e1 cdc8845 f4742fd cdc8845 978439f cdc8845 2ebdd7c ea656ff 2ebdd7c cdc8845 594ac32 d4408a4 cdc8845 69d9579 978439f cdc8845 2ebdd7c f4742fd 2ebdd7c cdc8845 2ebdd7c cdc8845 f4742fd cdc8845 d4408a4 2ebdd7c cdc8845 f15cc8e cdc8845 2ebdd7c 9ce2e26 f4742fd 2ebdd7c cdc8845 2ebdd7c cdc8845 d68c359 cdc8845 64ba046 978439f cdc8845 594ac32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from datasets import load_dataset
#LOINC
datasetLOINC = load_dataset("awacke1/LOINC-CodeSet-Value-Description.csv")
#SNOMED:
datasetSNOMED = load_dataset("awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv")
#eCQM:
dataseteCQM = load_dataset("awacke1/eCQM-Code-Value-Semantic-Set.csv")
print(datasetLOINC)
print(datasetSNOMED)
print(dataseteCQM)
# play with some dataset tools before the show:
start_with_ar = datasetLOINC.filter(lambda example: example["Description"].startswith("Mental health"))
len(start_with_ar)
#print(start_with_ar["Description"])
#---
#Main Stage - Begin!
#---
import os
import json
import numpy as np
import gradio as gr
CHOICES = ["SNOMED", "LOINC", "CQM"]
JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""
def lowercase_title(example):
return {"title": example[title].lower()}
# demonstrate map function of dataset
JSONOBJ_MAP=datasetLOINC.map(lowercase_title)
#def fn( text1, text2, num, slider1, slider2, single_checkbox, checkboxes, radio, dropdown, im1, im2, im3, im4,
# video, audio1, audio2, file, df1, df2,):
def fn( text1, text2, single_checkbox, checkboxes, radio, im4, file, df1, df2,):
return (
(text1 if single_checkbox else text2) + ", selected:" + ", ".join(checkboxes), # Text
# {"positive": num / (num + slider1 + slider2),"negative": slider1 / (num + slider1 + slider2),"neutral": slider2 / (num + slider1 + slider2),}, # Label
# (audio1[0], np.flipud(audio1[1])) if audio1 is not None else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio
# np.flipud(im1) if im1 is not None else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image
# video if video is not None else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video
[
("The", "art"),
("quick brown", "adj"),
("fox", "nn"),
("jumped", "vrb"),
("testing testing testing", None),
("over", "prp"),
("the", "art"),
("testing", None),
("lazy", "adj"),
("dogs", "nn"),
(".", "punc"),
] + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText
[
("The testing testing testing", None),
("over", 0.6),
("the", 0.2),
("testing", None),
("lazy", -0.1),
("dogs", 0.4),
(".", 0),
] + [(f"test", x / 10) for x in range(-10, 10)], # HighlightedText
#json.loads(JSONOBJ), # JSON
json.loads(JSONOBJ_MAP), # JSONOBJ_MAP
"<button style='background-color: red'>Click Me: " + radio + "</button>", # HTML
os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
df1, # Dataframe
np.random.randint(0, 10, (4, 4)), # Dataframe
df2, # Timeseries
)
demo = gr.Interface(
fn,
inputs=[
gr.Textbox(value="Lorem ipsum", label="Textbox"),
gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"),
#gr.Number(label="Number", value=42),
#gr.Slider(10, 20, value=15, label="Slider: 10 - 20"),
#gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
gr.Checkbox(label="Check for NER Match on Submit"),
gr.CheckboxGroup(label="Clinical Terminology to Check", choices=CHOICES, value=CHOICES[0:2]),
gr.Radio(label="Preferred Terminology Output", choices=CHOICES, value=CHOICES[2]),
#gr.Dropdown(label="Dropdown", choices=CHOICES),
#gr.Image(label="Image"),
#gr.Image(label="Image w/ Cropper", tool="select"),
#gr.Image(label="Sketchpad", source="canvas"),
gr.Image(label="Webcam", source="webcam"),
#gr.Video(label="Video"),
#gr.Audio(label="Audio"),
#gr.Audio(label="Microphone", source="microphone"),
gr.File(label="File"),
gr.Dataframe(label="Filters", headers=["Name", "Age", "Gender"]),
gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]),
],
outputs=[
gr.Textbox(label="Textbox"),
#gr.Label(label="Label"),
#gr.Audio(label="Audio"),
#gr.Image(label="Image"),
#gr.Video(label="Video"),
gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
gr.HighlightedText(label="HighlightedText", show_legend=True),
gr.JSON(label="JSON"),
gr.HTML(label="HTML"),
gr.File(label="File"),
gr.Dataframe(label="Dataframe"),
gr.Dataframe(label="Numpy"),
gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
],
examples=[
[
"the quick brown fox",
"jumps over the lazy dog",
#10,
#12,
#4,
True,
["SNOMED", "LOINC", "CQM"],
"SNOMED",
#"bar",
#os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
#os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
#os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
#os.path.join(os.path.dirname(__file__), "files/world.mp4"),
#os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
#os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
[[1, 2, 3], [3, 4, 5]],
os.path.join(os.path.dirname(__file__), "files/time.csv"),
]
]
* 3,
theme="default",
title="⚗️🧠🔬🧬 Clinical Terminology Auto Mapper AI 👩⚕️🩺⚕️🙋",
cache_examples=False,
description="Clinical Terminology Auto Mapper AI",
article="Learn more at [Yggdrasil](https://github.com/AaronCWacker/Yggdrasil)",
live=True,
)
if __name__ == "__main__":
demo.launch() |