File size: 8,167 Bytes
a8505b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from transformers import pipeline
import io, base64
from PIL import Image
import numpy as np
import tensorflow as tf
import mediapy
import os
import sys
from huggingface_hub import snapshot_download

import streamlit as st
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import datetime


# load cloud firestore client which establishes a connection to dataset where we persist data
@st.experimental_singleton
def get_db_firestore():
    cred = credentials.Certificate('test.json')
    firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
    db = firestore.client()
    return db

#start it up
db = get_db_firestore()
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")

def transcribe(audio):
    text = asr(audio)["text"]
    return text

classifier = pipeline("text-classification")

def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

def text_to_sentiment(text):
    sentiment = classifier(text)[0]["label"]
    return sentiment 

def upsert(text):
    date_time =str(datetime.datetime.today())
    doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time)
    doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co./spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,})
    saved = select('Text2SpeechSentimentSave', date_time)
    # check it here:  https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces
    return saved
      
def select(collection, document):
    doc_ref = db.collection(collection).document(document)
    doc = doc_ref.get()
    docid = ("The id is: ", doc.id)
    contents = ("The contents are: ", doc.to_dict())
    return contents
          
def selectall(text):
    docs = db.collection('Text2SpeechSentimentSave').stream()
    doclist=''
    for doc in docs:
        #docid=doc.id
        #dict=doc.to_dict()
        #doclist+=doc.to_dict()
        r=(f'{doc.id} => {doc.to_dict()}')
        doclist += r
    return doclist 
    
#demo = gr.Blocks()


    
#demo.launch(share=True)


# 1. GPT-J: Story Generation Pipeline
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")

# 2. LatentDiffusion: Latent Diffusion Interface
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")

# 3. FILM: Frame Interpolation Model (code re-use from spaces/akhaliq/frame-interpolation/tree/main)
os.system("git clone https://github.com/google-research/frame-interpolation")
sys.path.append("frame-interpolation")
from eval import interpolator, util

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)

model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
interpolator = interpolator.Interpolator(model, None)

def generate_story(choice, input_text):
    query = "<BOS> <{0}> {1}".format(choice, input_text)
    
    print(query)
    generated_text = story_gen(query)
    generated_text = generated_text[0]['generated_text']
    generated_text = generated_text.split('> ')[2]
    
    return generated_text
    
def generate_images(generated_text):
    steps=50
    width=256
    height=256
    num_images=4
    diversity=6
    image_bytes = image_gen(generated_text, steps, width, height, num_images, diversity)
    
    # Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
    generated_images = []
    for image in image_bytes[1]:
        image_str = image[0]
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
        
    return generated_images
    
def generate_interpolation(gallery):
    times_to_interpolate = 4
    
    generated_images = []
    for image_str in gallery:
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
    
    generated_images[0].save('frame_0.png')
    generated_images[1].save('frame_1.png')
    generated_images[2].save('frame_2.png')
    generated_images[3].save('frame_3.png')
    
    input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]

    frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))

    mediapy.write_video("out.mp4", frames, fps=15)
    
    return "out.mp4"
    
    

demo = gr.Blocks()

with demo:
    #audio_file = gr.Audio(type="filepath")
    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    text = gr.Textbox()
    label = gr.Label()
    saved = gr.Textbox()
    savedAll = gr.Textbox()
    
    b1 = gr.Button("Recognize Speech")
    b2 = gr.Button("Classify Sentiment")
    b3 = gr.Button("Save Speech to Text")
    b4 = gr.Button("Retrieve All")

    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    b2.click(text_to_sentiment, inputs=text, outputs=label)
    b3.click(upsert, inputs=text, outputs=saved)
    b4.click(selectall, inputs=text, outputs=savedAll)
    
    with gr.Row():
    
        # Left column (inputs)
        with gr.Column():
            input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
            input_start_text = gr.Textbox(placeholder='A teddy bear outer space', label="Starting Text")
            
            gr.Markdown("Be sure to run each of the buttons one at a time, they depend on each others' outputs!")
            
            # Rows of instructions & buttons
            with gr.Row():
                gr.Markdown("1. Select a type of story, then write some starting text! Then hit the 'Generate Story' button to generate a story! Feel free to edit the generated story afterwards!")
                button_gen_story = gr.Button("Generate Story")
            with gr.Row():
                gr.Markdown("2. After generating a story, hit the 'Generate Images' button to create some visuals for your story! (Can re-run multiple times!)")
                button_gen_images = gr.Button("Generate Images")
            with gr.Row():
                gr.Markdown("3. After generating some images, hit the 'Generate Video' button to create a short video by interpolating the previously generated visuals!")
                button_gen_video = gr.Button("Generate Video")
                
            # Rows of references
            with gr.Row():
                gr.Markdown("--Models Used--")
            with gr.Row():
                gr.Markdown("Story Generation: [GPT-J](https://huggingface.co./pranavpsv/gpt2-genre-story-generator)")
            with gr.Row():
                gr.Markdown("Image Generation Conditioned on Text: [Latent Diffusion](https://huggingface.co./spaces/multimodalart/latentdiffusion) | [Github Repo](https://github.com/CompVis/latent-diffusion)")
            with gr.Row():
                gr.Markdown("Interpolations: [FILM](https://huggingface.co./spaces/akhaliq/frame-interpolation) | [Github Repo](https://github.com/google-research/frame-interpolation)")
            with gr.Row():
                gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_story_and_video_generation)")
                
        # Right column (outputs)
        with gr.Column():
            output_generated_story = gr.Textbox(label="Generated Story")
            output_gallery = gr.Gallery(label="Generated Story Images")
            output_interpolation = gr.Video(label="Generated Video")
            
    # Bind functions to buttons
    button_gen_story.click(fn=generate_story, inputs=[input_story_type , input_start_text], outputs=output_generated_story)
    button_gen_images.click(fn=generate_images, inputs=output_generated_story, outputs=output_gallery)
    button_gen_video.click(fn=generate_interpolation, inputs=output_gallery, outputs=output_interpolation)

demo.launch(debug=True, enable_queue=True)