Spaces:
Running
Running
import argparse, os, re | |
import torch | |
import numpy as np | |
from random import randint | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import contextmanager, nullcontext | |
from ldmlib.util import instantiate_from_config | |
from optimUtils import split_weighted_subprompts, logger | |
from transformers import logging | |
# from samplers import CompVisDenoiser | |
logging.set_verbosity_error() | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def load_model_from_config(ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
return sd | |
config = "optimizedSD/v1-inference.yaml" | |
DEFAULT_CKPT = "models/ldm/stable-diffusion-v1/model.ckpt" | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render" | |
) | |
parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples") | |
parser.add_argument( | |
"--skip_grid", | |
action="store_true", | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--skip_save", | |
action="store_true", | |
help="do not save individual samples. For speed measurements.", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action="store_true", | |
help="if enabled, uses the same starting code across samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=5, | |
help="how many samples to produce for each given prompt. A.k.a. batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=7.5, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--device", | |
type=str, | |
default="cuda", | |
help="specify GPU (cuda/cuda:0/cuda:1/...)", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=None, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--unet_bs", | |
type=int, | |
default=1, | |
help="Slightly reduces inference time at the expense of high VRAM (value > 1 not recommended )", | |
) | |
parser.add_argument( | |
"--turbo", | |
action="store_true", | |
help="Reduces inference time on the expense of 1GB VRAM", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
parser.add_argument( | |
"--format", | |
type=str, | |
help="output image format", | |
choices=["jpg", "png"], | |
default="png", | |
) | |
parser.add_argument( | |
"--sampler", | |
type=str, | |
help="sampler", | |
choices=["ddim", "plms","heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"], | |
default="plms", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
help="path to checkpoint of model", | |
default=DEFAULT_CKPT, | |
) | |
opt = parser.parse_args() | |
tic = time.time() | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
grid_count = len(os.listdir(outpath)) - 1 | |
if opt.seed == None: | |
opt.seed = randint(0, 1000000) | |
seed_everything(opt.seed) | |
# Logging | |
logger(vars(opt), log_csv = "logs/txt2img_logs.csv") | |
sd = load_model_from_config(f"{opt.ckpt}") | |
li, lo = [], [] | |
for key, value in sd.items(): | |
sp = key.split(".") | |
if (sp[0]) == "model": | |
if "input_blocks" in sp: | |
li.append(key) | |
elif "middle_block" in sp: | |
li.append(key) | |
elif "time_embed" in sp: | |
li.append(key) | |
else: | |
lo.append(key) | |
for key in li: | |
sd["model1." + key[6:]] = sd.pop(key) | |
for key in lo: | |
sd["model2." + key[6:]] = sd.pop(key) | |
config = OmegaConf.load(f"{config}") | |
model = instantiate_from_config(config.modelUNet) | |
_, _ = model.load_state_dict(sd, strict=False) | |
model.eval() | |
model.unet_bs = opt.unet_bs | |
model.cdevice = opt.device | |
model.turbo = opt.turbo | |
modelCS = instantiate_from_config(config.modelCondStage) | |
_, _ = modelCS.load_state_dict(sd, strict=False) | |
modelCS.eval() | |
modelCS.cond_stage_model.device = opt.device | |
modelFS = instantiate_from_config(config.modelFirstStage) | |
_, _ = modelFS.load_state_dict(sd, strict=False) | |
modelFS.eval() | |
del sd | |
if opt.device != "cpu" and opt.precision == "autocast": | |
model.half() | |
modelCS.half() | |
start_code = None | |
if opt.fixed_code: | |
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=opt.device) | |
batch_size = opt.n_samples | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
assert opt.prompt is not None | |
prompt = opt.prompt | |
print(f"Using prompt: {prompt}") | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
text = f.read() | |
print(f"Using prompt: {text.strip()}") | |
data = text.splitlines() | |
data = batch_size * list(data) | |
data = list(chunk(sorted(data), batch_size)) | |
if opt.precision == "autocast" and opt.device != "cpu": | |
precision_scope = autocast | |
else: | |
precision_scope = nullcontext | |
seeds = "" | |
with torch.no_grad(): | |
all_samples = list() | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompts[0])))[:150] | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
with precision_scope("cuda"): | |
modelCS.to(opt.device) | |
uc = None | |
if opt.scale != 1.0: | |
uc = modelCS.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
subprompts, weights = split_weighted_subprompts(prompts[0]) | |
if len(subprompts) > 1: | |
c = torch.zeros_like(uc) | |
totalWeight = sum(weights) | |
# normalize each "sub prompt" and add it | |
for i in range(len(subprompts)): | |
weight = weights[i] | |
# if not skip_normalize: | |
weight = weight / totalWeight | |
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) | |
else: | |
c = modelCS.get_learned_conditioning(prompts) | |
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f] | |
if opt.device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelCS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
samples_ddim = model.sample( | |
S=opt.ddim_steps, | |
conditioning=c, | |
seed=opt.seed, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code, | |
sampler = opt.sampler, | |
) | |
modelFS.to(opt.device) | |
print(samples_ddim.shape) | |
print("saving images") | |
for i in range(batch_size): | |
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0)) | |
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
Image.fromarray(x_sample.astype(np.uint8)).save( | |
os.path.join(sample_path, "seed_" + str(opt.seed) + "_" + f"{base_count:05}.{opt.format}") | |
) | |
seeds += str(opt.seed) + "," | |
opt.seed += 1 | |
base_count += 1 | |
if opt.device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelFS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
del samples_ddim | |
print("memory_final = ", torch.cuda.memory_allocated() / 1e6) | |
toc = time.time() | |
time_taken = (toc - tic) / 60.0 | |
print( | |
( | |
"Samples finished in {0:.2f} minutes and exported to " | |
+ sample_path | |
+ "\n Seeds used = " | |
+ seeds[:-1] | |
).format(time_taken) | |
) | |