iurf7irfuyytruyyugb / optimizedSD /inpaint_gradio.py
johnslegers's picture
test
121f6d3
raw
history blame
11.1 kB
import argparse
import os
import re
import time
from contextlib import nullcontext
from itertools import islice
from random import randint
import gradio as gr
import numpy as np
import torch
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from torch import autocast
from torchvision.utils import make_grid
from tqdm import tqdm, trange
from transformers import logging
from ldmlib.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
logging.set_verbosity_error()
import mimetypes
mimetypes.init()
mimetypes.add_type("application/javascript", ".js")
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
def load_img(image, h0, w0):
image = image.convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New image size ({w}, {h})")
image = image.resize((w, h), resample=Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def load_mask(mask, h0, w0, newH, newW, invert=False):
image = mask.convert("RGB")
w, h = image.size
print(f"loaded input mask of size ({w}, {h})")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New mask size ({w}, {h})")
image = image.resize((newW, newH), resample=Image.LANCZOS)
# image = image.resize((64, 64), resample=Image.LANCZOS)
image = np.array(image)
if invert:
print("inverted")
where_0, where_1 = np.where(image == 0), np.where(image == 255)
image[where_0], image[where_1] = 255, 0
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def generate(
image,
mask_image,
prompt,
strength,
ddim_steps,
n_iter,
batch_size,
Height,
Width,
scale,
ddim_eta,
unet_bs,
device,
seed,
outdir,
img_format,
turbo,
full_precision,
):
if seed == "":
seed = randint(0, 1000000)
seed = int(seed)
seed_everything(seed)
sampler = "ddim"
# Logging
logger(locals(), log_csv="logs/inpaint_gradio_logs.csv")
init_image = load_img(image['image'], Height, Width).to(device)
model.unet_bs = unet_bs
model.turbo = turbo
model.cdevice = device
modelCS.cond_stage_model.device = device
if device != "cpu" and full_precision == False:
model.half()
modelCS.half()
modelFS.half()
init_image = init_image.half()
# mask.half()
tic = time.time()
os.makedirs(outdir, exist_ok=True)
outpath = outdir
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
assert prompt is not None
data = [batch_size * [prompt]]
modelFS.to(device)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
init_latent = repeat(init_latent, "1 ... -> b ...", b=batch_size)
if mask_image is None:
mask = load_mask(image['mask'], Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device)
else:
image['mask']=mask_image
mask = load_mask(mask_image, Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
if strength == 1:
print("strength should be less than 1, setting it to 0.999")
strength = 0.999
assert 0.0 <= strength < 1.0, "can only work with strength in [0.0, 1.0]"
t_enc = int(strength * ddim_steps)
print(f"target t_enc is {t_enc} steps")
if full_precision == False and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
all_samples = []
seeds = ""
with torch.no_grad():
all_samples = list()
for _ in trange(n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent, torch.tensor([t_enc] * batch_size).to(device),
seed, ddim_eta, ddim_steps)
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
mask=mask,
x_T=init_latent,
sampler=sampler,
)
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
all_samples.append(x_sample.to("cpu"))
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}")
)
seeds += str(seed) + ","
seed += 1
base_count += 1
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
del samples_ddim
del x_sample
del x_samples_ddim
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
grid = torch.cat(all_samples, 0)
grid = make_grid(grid, nrow=n_iter)
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
txt = (
"Samples finished in "
+ str(round(time_taken, 3))
+ " minutes and exported to \n"
+ sample_path
+ "\nSeeds used = "
+ seeds[:-1]
)
return Image.fromarray(grid.astype(np.uint8)), image['mask'], txt
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='txt2img using gradio')
parser.add_argument('--config_path', default="optimizedSD/v1-inference.yaml", type=str, help='config path')
parser.add_argument('--ckpt_path', default="models/ldm/stable-diffusion-v1/model.ckpt", type=str, help='ckpt path')
args = parser.parse_args()
config = args.config_path
ckpt = args.ckpt_path
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, v_ in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
demo = gr.Interface(
fn=generate,
inputs=[
gr.Image(tool="sketch", type="pil"),
gr.Image(tool="editor", type="pil"),
"text",
gr.Slider(0, 0.99, value=0.99, step=0.01),
gr.Slider(1, 1000, value=50),
gr.Slider(1, 100, step=1),
gr.Slider(1, 100, step=1),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(0, 50, value=7.5, step=0.1),
gr.Slider(0, 1, step=0.01),
gr.Slider(1, 2, value=1, step=1),
gr.Text(value="cuda"),
"text",
gr.Text(value="outputs/inpaint-samples"),
gr.Radio(["png", "jpg"], value='png'),
"checkbox",
"checkbox",
],
outputs=["image", "image", "text"],
)
demo.launch()