Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
from torchvision.utils import make_grid | |
import os, re | |
from PIL import Image | |
import torch | |
import numpy as np | |
from random import randint | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from einops import rearrange, repeat | |
from contextlib import nullcontext | |
from ldmlib.util import instantiate_from_config | |
from transformers import logging | |
import pandas as pd | |
from optimUtils import split_weighted_subprompts, logger | |
logging.set_verbosity_error() | |
import mimetypes | |
mimetypes.init() | |
mimetypes.add_type("application/javascript", ".js") | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def load_model_from_config(ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
return sd | |
def load_img(image, h0, w0): | |
image = image.convert("RGB") | |
w, h = image.size | |
print(f"loaded input image of size ({w}, {h})") | |
if h0 is not None and w0 is not None: | |
h, w = h0, w0 | |
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 | |
print(f"New image size ({w}, {h})") | |
image = image.resize((w, h), resample=Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
config = "optimizedSD/v1-inference.yaml" | |
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt" | |
sd = load_model_from_config(f"{ckpt}") | |
li, lo = [], [] | |
for key, v_ in sd.items(): | |
sp = key.split(".") | |
if (sp[0]) == "model": | |
if "input_blocks" in sp: | |
li.append(key) | |
elif "middle_block" in sp: | |
li.append(key) | |
elif "time_embed" in sp: | |
li.append(key) | |
else: | |
lo.append(key) | |
for key in li: | |
sd["model1." + key[6:]] = sd.pop(key) | |
for key in lo: | |
sd["model2." + key[6:]] = sd.pop(key) | |
config = OmegaConf.load(f"{config}") | |
model = instantiate_from_config(config.modelUNet) | |
_, _ = model.load_state_dict(sd, strict=False) | |
model.eval() | |
modelCS = instantiate_from_config(config.modelCondStage) | |
_, _ = modelCS.load_state_dict(sd, strict=False) | |
modelCS.eval() | |
modelFS = instantiate_from_config(config.modelFirstStage) | |
_, _ = modelFS.load_state_dict(sd, strict=False) | |
modelFS.eval() | |
del sd | |
def generate( | |
image, | |
prompt, | |
strength, | |
ddim_steps, | |
n_iter, | |
batch_size, | |
Height, | |
Width, | |
scale, | |
ddim_eta, | |
unet_bs, | |
device, | |
seed, | |
outdir, | |
img_format, | |
turbo, | |
full_precision, | |
): | |
if seed == "": | |
seed = randint(0, 1000000) | |
seed = int(seed) | |
seed_everything(seed) | |
# Logging | |
sampler = "ddim" | |
logger(locals(), log_csv = "logs/img2img_gradio_logs.csv") | |
init_image = load_img(image, Height, Width).to(device) | |
model.unet_bs = unet_bs | |
model.turbo = turbo | |
model.cdevice = device | |
modelCS.cond_stage_model.device = device | |
if device != "cpu" and full_precision == False: | |
model.half() | |
modelCS.half() | |
modelFS.half() | |
init_image = init_image.half() | |
tic = time.time() | |
os.makedirs(outdir, exist_ok=True) | |
outpath = outdir | |
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150] | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
modelFS.to(device) | |
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size) | |
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space | |
if device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelFS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
assert 0.0 <= strength <= 1.0, "can only work with strength in [0.0, 1.0]" | |
t_enc = int(strength * ddim_steps) | |
print(f"target t_enc is {t_enc} steps") | |
if full_precision == False and device != "cpu": | |
precision_scope = autocast | |
else: | |
precision_scope = nullcontext | |
all_samples = [] | |
seeds = "" | |
with torch.no_grad(): | |
all_samples = list() | |
for _ in trange(n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
with precision_scope("cuda"): | |
modelCS.to(device) | |
uc = None | |
if scale != 1.0: | |
uc = modelCS.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
subprompts, weights = split_weighted_subprompts(prompts[0]) | |
if len(subprompts) > 1: | |
c = torch.zeros_like(uc) | |
totalWeight = sum(weights) | |
# normalize each "sub prompt" and add it | |
for i in range(len(subprompts)): | |
weight = weights[i] | |
# if not skip_normalize: | |
weight = weight / totalWeight | |
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) | |
else: | |
c = modelCS.get_learned_conditioning(prompts) | |
if device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelCS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
# encode (scaled latent) | |
z_enc = model.stochastic_encode( | |
init_latent, torch.tensor([t_enc] * batch_size).to(device), seed, ddim_eta, ddim_steps | |
) | |
# decode it | |
samples_ddim = model.sample( | |
t_enc, | |
c, | |
z_enc, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc, | |
sampler = sampler | |
) | |
modelFS.to(device) | |
print("saving images") | |
for i in range(batch_size): | |
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0)) | |
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
all_samples.append(x_sample.to("cpu")) | |
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
Image.fromarray(x_sample.astype(np.uint8)).save( | |
os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}") | |
) | |
seeds += str(seed) + "," | |
seed += 1 | |
base_count += 1 | |
if device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelFS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
del samples_ddim | |
del x_sample | |
del x_samples_ddim | |
print("memory_final = ", torch.cuda.memory_allocated() / 1e6) | |
toc = time.time() | |
time_taken = (toc - tic) / 60.0 | |
grid = torch.cat(all_samples, 0) | |
grid = make_grid(grid, nrow=n_iter) | |
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy() | |
txt = ( | |
"Samples finished in " | |
+ str(round(time_taken, 3)) | |
+ " minutes and exported to \n" | |
+ sample_path | |
+ "\nSeeds used = " | |
+ seeds[:-1] | |
) | |
return Image.fromarray(grid.astype(np.uint8)), txt | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Image(tool="editor", type="pil"), | |
"text", | |
gr.Slider(0, 1, value=0.75), | |
gr.Slider(1, 1000, value=50), | |
gr.Slider(1, 100, step=1), | |
gr.Slider(1, 100, step=1), | |
gr.Slider(64, 4096, value=512, step=64), | |
gr.Slider(64, 4096, value=512, step=64), | |
gr.Slider(0, 50, value=7.5, step=0.1), | |
gr.Slider(0, 1, step=0.01), | |
gr.Slider(1, 2, value=1, step=1), | |
gr.Text(value="cuda"), | |
"text", | |
gr.Text(value="outputs/img2img-samples"), | |
gr.Radio(["png", "jpg"], value='png'), | |
"checkbox", | |
"checkbox", | |
], | |
outputs=["image", "text"], | |
) | |
demo.launch() | |