awaawawawa's picture
Upload 14 files
930c48c
raw
history blame
1.81 kB
import os
from pathlib import Path
import torch
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
def prune_it(p, keep_only_ema=True):
print(f"prunin' in path: {p}")
size_initial = os.path.getsize(p)
nsd = dict()
sd = torch.load(p, map_location="cpu")
print(sd.keys())
for k in sd.keys():
if k != "optimizer_states":
nsd[k] = sd[k]
else:
print(f"removing optimizer states for path {p}")
if "global_step" in sd:
print(f"This is global step {sd['global_step']}.")
if keep_only_ema:
sd = nsd["state_dict"].copy()
# infer ema keys
ema_keys = {k: "model_ema." + k[6:].replace(".", "") for k in sd.keys() if k.startswith('model.')}
new_sd = dict()
for k in sd:
if k in ema_keys:
print(k, ema_keys[k])
new_sd[k] = sd[ema_keys[k]]
elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
new_sd[k] = sd[k]
assert len(new_sd) == len(sd) - len(ema_keys)
nsd["state_dict"] = new_sd
else:
sd = nsd['state_dict'].copy()
new_sd = dict()
for k in sd:
new_sd[k] = sd[k]
nsd['state_dict'] = new_sd
fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt"
print(f"saving pruned checkpoint at: {fn}")
torch.save(nsd, fn)
newsize = os.path.getsize(fn)
MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \
f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states"
if keep_only_ema:
MSG += " and non-EMA weights"
print(MSG)
if __name__ == "__main__":
prune_it('wd-v1-2-full-ema.ckpt')