Spaces:
Running
Running
File size: 10,846 Bytes
121f6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import argparse, os, re
import torch
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from einops import rearrange, repeat
from ldmlib.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
import pandas as pd
logging.set_verbosity_error()
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
def load_img(path, h0, w0):
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New image size ({w}, {h})")
image = image.resize((w, h), resample=Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render"
)
parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/img2img-samples")
parser.add_argument("--init-img", type=str, nargs="?", help="path to the input image")
parser.add_argument(
"--skip_grid",
action="store_true",
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action="store_true",
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=None,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=None,
help="image width, in pixel space",
)
parser.add_argument(
"--strength",
type=float,
default=0.75,
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
parser.add_argument(
"--n_samples",
type=int,
default=5,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="CPU or GPU (cuda/cuda:0/cuda:1/...)",
)
parser.add_argument(
"--unet_bs",
type=int,
default=1,
help="Slightly reduces inference time at the expense of high VRAM (value > 1 not recommended )",
)
parser.add_argument(
"--turbo",
action="store_true",
help="Reduces inference time on the expense of 1GB VRAM",
)
parser.add_argument(
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
)
parser.add_argument(
"--format",
type=str,
help="output image format",
choices=["jpg", "png"],
default="png",
)
parser.add_argument(
"--sampler",
type=str,
help="sampler",
choices=["ddim"],
default="ddim",
)
opt = parser.parse_args()
tic = time.time()
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
grid_count = len(os.listdir(outpath)) - 1
if opt.seed == None:
opt.seed = randint(0, 1000000)
seed_everything(opt.seed)
# Logging
logger(vars(opt), log_csv = "logs/img2img_logs.csv")
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
assert os.path.isfile(opt.init_img)
init_image = load_img(opt.init_img, opt.H, opt.W).to(opt.device)
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = opt.device
model.unet_bs = opt.unet_bs
model.turbo = opt.turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = opt.device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if opt.device != "cpu" and opt.precision == "autocast":
model.half()
modelCS.half()
modelFS.half()
init_image = init_image.half()
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
assert opt.prompt is not None
prompt = opt.prompt
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = batch_size * list(data)
data = list(chunk(sorted(data), batch_size))
modelFS.to(opt.device)
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
assert 0.0 <= opt.strength <= 1.0, "can only work with strength in [0.0, 1.0]"
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt.precision == "autocast" and opt.device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
seeds = ""
with torch.no_grad():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompts[0])))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
with precision_scope("cuda"):
modelCS.to(opt.device)
uc = None
if opt.scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(opt.device),
opt.seed,
opt.ddim_eta,
opt.ddim_steps,
)
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
sampler = opt.sampler
)
modelFS.to(opt.device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(opt.seed) + "_" + f"{base_count:05}.{opt.format}")
)
seeds += str(opt.seed) + ","
opt.seed += 1
base_count += 1
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
del samples_ddim
print("memory_final = ", torch.cuda.memory_allocated(device=opt.device) / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
print(
(
"Samples finished in {0:.2f} minutes and exported to "
+ sample_path
+ "\n Seeds used = "
+ seeds[:-1]
).format(time_taken)
)
|