Spaces:
Running
Running
File size: 48,913 Bytes
121f6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 |
"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci
"""
import time, math
from tqdm.auto import trange, tqdm
import torch
from einops import rearrange
from tqdm import tqdm
from ldmlib.modules.distributions.distributions import DiagonalGaussianDistribution
from ldmlib.models.autoencoder import VQModelInterface
import torch.nn as nn
import numpy as np
import pytorch_lightning as pl
from functools import partial
from pytorch_lightning.utilities.distributed import rank_zero_only
from ldmlib.util import exists, default, instantiate_from_config
from ldmlib.modules.diffusionmodules.util import make_beta_schedule
from ldmlib.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldmlib.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from .samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
def disabled_train(self):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class DDPM(pl.LightningModule):
# classic DDPM with Gaussian diffusion, in image space
def __init__(self,
timesteps=1000,
beta_schedule="linear",
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor="val/loss",
use_ema=True,
first_stage_key="image",
image_size=256,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.,
conditioning_key=None,
parameterization="eps", # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
):
super().__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
class FirstStage(DDPM):
"""main class"""
def __init__(self,
first_stage_config,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
*args, **kwargs):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__()
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
self.instantiate_first_stage(first_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1. / self.scale_factor * z
if hasattr(self, "split_input_params"):
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
else:
return self.first_stage_model.decode(z)
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
else:
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_first_stage(self, x):
if hasattr(self, "split_input_params"):
if self.split_input_params["patch_distributed_vq"]:
ks = self.split_input_params["ks"] # eg. (128, 128)
stride = self.split_input_params["stride"] # eg. (64, 64)
df = self.split_input_params["vqf"]
self.split_input_params['original_image_size'] = x.shape[-2:]
bs, nc, h, w = x.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print("reducing Kernel")
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print("reducing stride")
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
z = unfold(x) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
for i in range(z.shape[-1])]
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization
return decoded
else:
return self.first_stage_model.encode(x)
else:
return self.first_stage_model.encode(x)
class CondStage(DDPM):
"""main class"""
def __init__(self,
cond_stage_config,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
*args, **kwargs):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
if cond_stage_config == '__is_unconditional__':
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__()
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
print(f"Training {self.__class__.__name__} as an unconditional model.")
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != '__is_first_stage__'
assert config != '__is_unconditional__'
model = instantiate_from_config(config)
self.cond_stage_model = model
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
def forward(self, x, t, cc):
out = self.diffusion_model(x, t, context=cc)
return out
class DiffusionWrapperOut(pl.LightningModule):
def __init__(self, diff_model_config):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
def forward(self, h,emb,tp,hs, cc):
return self.diffusion_model(h,emb,tp,hs, context=cc)
class UNet(DDPM):
"""main class"""
def __init__(self,
unetConfigEncode,
unetConfigDecode,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
unet_bs = 1,
scale_by_std=False,
*args, **kwargs):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
self.num_downs = 0
self.cdevice = "cuda"
self.unetConfigEncode = unetConfigEncode
self.unetConfigDecode = unetConfigDecode
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.model1 = DiffusionWrapper(self.unetConfigEncode)
self.model2 = DiffusionWrapperOut(self.unetConfigDecode)
self.model1.eval()
self.model2.eval()
self.turbo = False
self.unet_bs = unet_bs
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
def make_cond_schedule(self, ):
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
self.cond_ids[:self.num_timesteps_cond] = ids
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx):
# only for very first batch
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.cdevice)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
def apply_model(self, x_noisy, t, cond, return_ids=False):
if(not self.turbo):
self.model1.to(self.cdevice)
step = self.unet_bs
h,emb,hs = self.model1(x_noisy[0:step], t[:step], cond[:step])
bs = cond.shape[0]
# assert bs%2 == 0
lenhs = len(hs)
for i in range(step,bs,step):
h_temp,emb_temp,hs_temp = self.model1(x_noisy[i:i+step], t[i:i+step], cond[i:i+step])
h = torch.cat((h,h_temp))
emb = torch.cat((emb,emb_temp))
for j in range(lenhs):
hs[j] = torch.cat((hs[j], hs_temp[j]))
if(not self.turbo):
self.model1.to("cpu")
self.model2.to(self.cdevice)
hs_temp = [hs[j][:step] for j in range(lenhs)]
x_recon = self.model2(h[:step],emb[:step],x_noisy.dtype,hs_temp,cond[:step])
for i in range(step,bs,step):
hs_temp = [hs[j][i:i+step] for j in range(lenhs)]
x_recon1 = self.model2(h[i:i+step],emb[i:i+step],x_noisy.dtype,hs_temp,cond[i:i+step])
x_recon = torch.cat((x_recon, x_recon1))
if(not self.turbo):
self.model2.to("cpu")
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def register_buffer1(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device(self.cdevice):
attr = attr.to(torch.device(self.cdevice))
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.num_timesteps,verbose=verbose)
assert self.alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = lambda x: x.to(self.cdevice)
self.register_buffer1('betas', to_torch(self.betas))
self.register_buffer1('alphas_cumprod', to_torch(self.alphas_cumprod))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=self.alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,verbose=verbose)
self.register_buffer1('ddim_sigmas', ddim_sigmas)
self.register_buffer1('ddim_alphas', ddim_alphas)
self.register_buffer1('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer1('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
@torch.no_grad()
def sample(self,
S,
conditioning,
x0=None,
shape = None,
seed=1234,
callback=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
sampler = "plms",
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
):
if(self.turbo):
self.model1.to(self.cdevice)
self.model2.to(self.cdevice)
if x0 is None:
batch_size, b1, b2, b3 = shape
img_shape = (1, b1, b2, b3)
tens = []
print("seeds used = ", [seed+s for s in range(batch_size)])
for _ in range(batch_size):
torch.manual_seed(seed)
tens.append(torch.randn(img_shape, device=self.cdevice))
seed+=1
noise = torch.cat(tens)
del tens
x_latent = noise if x0 is None else x0
# sampling
if sampler in ('ddim', 'dpm2', 'heun', 'dpm2_a', 'lms') and not hasattr(self, 'ddim_timesteps'):
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
if sampler == "plms":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
print(f'Data shape for PLMS sampling is {shape}')
samples = self.plms_sampling(conditioning, batch_size, x_latent,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
elif sampler == "ddim":
samples = self.ddim_sampling(x_latent, conditioning, S, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
mask = mask,init_latent=x_T,use_original_steps=False,
callback=callback, img_callback=img_callback)
elif sampler == "euler":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
elif sampler == "euler_a":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
elif sampler == "dpm2":
samples = self.dpm_2_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
elif sampler == "heun":
samples = self.heun_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
elif sampler == "dpm2_a":
samples = self.dpm_2_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
elif sampler == "lms":
samples = self.lms_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
unconditional_guidance_scale=unconditional_guidance_scale,
img_callback=img_callback)
yield from samples
if(self.turbo):
self.model1.to("cpu")
self.model2.to("cpu")
@torch.no_grad()
def plms_sampling(self, cond,b, img,
ddim_use_original_steps=False,
callback=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, log_every_t=100,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,):
device = self.betas.device
timesteps = self.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
print(f"Running PLMS Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
old_eps = []
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full((b,), step, device=device, dtype=torch.long)
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
img = img_orig * mask + (1. - mask) * img
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
quantize_denoised=quantize_denoised, temperature=temperature,
noise_dropout=noise_dropout, score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
old_eps=old_eps, t_next=ts_next)
img, pred_x0, e_t = outs
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
if callback: yield from callback(i)
if img_callback: yield from img_callback(pred_x0, i)
yield from img_callback(img, len(iterator)-1)
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
return e_t
alphas = self.ddim_alphas
alphas_prev = self.ddim_alphas_prev
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
sigmas = self.ddim_sigmas
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
e_t = get_model_output(x, t)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = get_model_output(x_prev, t_next)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
@torch.no_grad()
def stochastic_encode(self, x0, t, seed, ddim_eta,ddim_steps,use_original_steps=False, noise=None):
# fast, but does not allow for exact reconstruction
# t serves as an index to gather the correct alphas
self.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
if noise is None:
b0, b1, b2, b3 = x0.shape
img_shape = (1, b1, b2, b3)
tens = []
print("seeds used = ", [seed+s for s in range(b0)])
for _ in range(b0):
torch.manual_seed(seed)
tens.append(torch.randn(img_shape, device=x0.device))
seed+=1
noise = torch.cat(tens)
del tens
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape) * noise)
@torch.no_grad()
def add_noise(self, x0, t):
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
noise = torch.randn(x0.shape, device=x0.device)
# print(extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape),
# extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape))
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape) * noise)
@torch.no_grad()
def ddim_sampling(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
mask = None,init_latent=None,use_original_steps=False,
callback=None, img_callback=None):
timesteps = self.ddim_timesteps
timesteps = timesteps[:t_start]
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
print(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
x_dec = x_latent
x0 = init_latent
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
if mask is not None:
# x0_noisy = self.add_noise(mask, torch.tensor([index] * x0.shape[0]).to(self.cdevice))
x0_noisy = x0
x_dec = x0_noisy* mask + (1. - mask) * x_dec
x_dec = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
if callback: yield from callback(i)
if img_callback: yield from img_callback(x_dec, i)
if mask is not None:
x_dec = x0 * mask + (1. - mask) * x_dec
yield from img_callback(x_dec, len(iterator)-1)
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None):
b, *_, device = *x.shape, x.device
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
alphas = self.ddim_alphas
alphas_prev = self.ddim_alphas_prev
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
sigmas = self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev
@torch.no_grad()
def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
img_callback=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running Euler Sampling with {len(sigmas) - 1} timesteps")
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = (sigmas[i] * (gamma + 1)).half()
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
s_i = sigma_hat * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
if img_callback: yield from img_callback(x, i)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None,
img_callback=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running Euler Ancestral Sampling with {len(sigmas) - 1} timesteps")
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
s_i = sigmas[i] * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
x = x + torch.randn_like(x) * sigma_up
yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
img_callback=None):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(alphas_cumprod=ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running Heun Sampling with {len(sigmas) - 1} timesteps")
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = (sigmas[i] * (gamma + 1)).half()
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
s_i = sigma_hat * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
if img_callback: yield from img_callback(x, i)
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
s_i = sigmas[i + 1] * s_in
x_in = torch.cat([x_2] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised_2 = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
img_callback=None):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running DPM2 Sampling with {len(sigmas) - 1} timesteps")
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
s_i = sigma_hat * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if img_callback: yield from img_callback(x, i)
d = to_d(x, sigma_hat, denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigma_hat ** (1 / 3) + sigmas[i + 1] ** (1 / 3)) / 2) ** 3
dt_1 = sigma_mid - sigma_hat
dt_2 = sigmas[i + 1] - sigma_hat
x_2 = x + d * dt_1
s_i = sigma_mid * s_in
x_in = torch.cat([x_2] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised_2 = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None,
img_callback=None):
"""Ancestral sampling with DPM-Solver inspired second-order steps."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running DPM2 Ancestral Sampling with {len(sigmas) - 1} timesteps")
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
s_i = sigmas[i] * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
dt_1 = sigma_mid - sigmas[i]
dt_2 = sigma_down - sigmas[i]
x_2 = x + d * dt_1
s_i = sigma_mid * s_in
x_in = torch.cat([x_2] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised_2 = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + torch.randn_like(x) * sigma_up
yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4,
img_callback=None):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
print(f"Running LMS Sampling with {len(sigmas) - 1} timesteps")
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
s_i = sigmas[i] * s_in
x_in = torch.cat([x] * 2)
t_in = torch.cat([s_i] * 2)
cond_in = torch.cat([unconditional_conditioning, cond])
c_out, c_in = [append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)]
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
if len(ds) > order:
ds.pop(0)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
yield from img_callback(x, len(sigmas)-1)
|