File size: 10,627 Bytes
121f6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from scipy import integrate
import torch
from tqdm.auto import trange, tqdm
import torch.nn as nn


def append_zero(x):
    return torch.cat([x, x.new_zeros([1])])


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
    return x[(...,) + (None,) * dims_to_append]

def get_ancestral_step(sigma_from, sigma_to):
    """Calculates the noise level (sigma_down) to step down to and the amount
    of noise to add (sigma_up) when doing an ancestral sampling step."""
    sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5
    sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
    return sigma_down, sigma_up


class DiscreteSchedule(nn.Module):
    """A mapping between continuous noise levels (sigmas) and a list of discrete noise
    levels."""

    def __init__(self, sigmas, quantize):
        super().__init__()
        self.register_buffer('sigmas', sigmas)
        self.quantize = quantize

    def get_sigmas(self, n=None):
        if n is None:
            return append_zero(self.sigmas.flip(0))
        t_max = len(self.sigmas) - 1
        t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
        return append_zero(self.t_to_sigma(t))

    def sigma_to_t(self, sigma, quantize=None):
        quantize = self.quantize if quantize is None else quantize
        dists = torch.abs(sigma - self.sigmas[:, None])
        if quantize:
            return torch.argmin(dists, dim=0).view(sigma.shape)
        low_idx, high_idx = torch.sort(torch.topk(dists, dim=0, k=2, largest=False).indices, dim=0)[0]
        low, high = self.sigmas[low_idx], self.sigmas[high_idx]
        w = (low - sigma) / (low - high)
        w = w.clamp(0, 1)
        t = (1 - w) * low_idx + w * high_idx
        return t.view(sigma.shape)

    def t_to_sigma(self, t):
        t = t.float()
        low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac()
        # print(low_idx, high_idx, w )
        return (1 - w) * self.sigmas[low_idx] + w * self.sigmas[high_idx]


class DiscreteEpsDDPMDenoiser(DiscreteSchedule):
    """A wrapper for discrete schedule DDPM models that output eps (the predicted
    noise)."""

    def __init__(self, alphas_cumprod, quantize):
        super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
        self.sigma_data = 1.

    def get_scalings(self, sigma):
        c_out = -sigma
        c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
        return c_out, c_in

    def get_eps(self, *args, **kwargs):
        return self.inner_model(*args, **kwargs)

    def forward(self, input, sigma, **kwargs):
        c_out, c_in = [append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
        eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
        return input + eps * c_out

class CompVisDenoiser(DiscreteEpsDDPMDenoiser):
    """A wrapper for CompVis diffusion models."""

    def __init__(self, alphas_cumprod, quantize=False, device='cpu'):
        super().__init__(alphas_cumprod, quantize=quantize)

    def get_eps(self, *args, **kwargs):
        return self.inner_model.apply_model(*args, **kwargs)


def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / append_dims(sigma, x.ndim)


def get_ancestral_step(sigma_from, sigma_to):
    """Calculates the noise level (sigma_down) to step down to and the amount
    of noise to add (sigma_up) when doing an ancestral sampling step."""
    sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5
    sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
    return sigma_down, sigma_up


@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        dt = sigmas[i + 1] - sigma_hat
        # Euler method
        x = x + d * dt
    return x



@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None):
    """Ancestral sampling with Euler method steps."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        d = to_d(x, sigmas[i], denoised)
        # Euler method
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        x = x + torch.randn_like(x) * sigma_up
    return x


@torch.no_grad()
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        dt = sigmas[i + 1] - sigma_hat
        if sigmas[i + 1] == 0:
            # Euler method
            x = x + d * dt
        else:
            # Heun's method
            x_2 = x + d * dt
            denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
            d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
            d_prime = (d + d_2) / 2
            x = x + d_prime * dt
    return x


@torch.no_grad()
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        # Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
        sigma_mid = ((sigma_hat ** (1 / 3) + sigmas[i + 1] ** (1 / 3)) / 2) ** 3
        dt_1 = sigma_mid - sigma_hat
        dt_2 = sigmas[i + 1] - sigma_hat
        x_2 = x + d * dt_1
        denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
        d_2 = to_d(x_2, sigma_mid, denoised_2)
        x = x + d_2 * dt_2
    return x


@torch.no_grad()
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None):
    """Ancestral sampling with DPM-Solver inspired second-order steps."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        d = to_d(x, sigmas[i], denoised)
        # Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
        sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
        dt_1 = sigma_mid - sigmas[i]
        dt_2 = sigma_down - sigmas[i]
        x_2 = x + d * dt_1
        denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
        d_2 = to_d(x_2, sigma_mid, denoised_2)
        x = x + d_2 * dt_2
        x = x + torch.randn_like(x) * sigma_up
    return x


def linear_multistep_coeff(order, t, i, j):
    if order - 1 > i:
        raise ValueError(f'Order {order} too high for step {i}')
    def fn(tau):
        prod = 1.
        for k in range(order):
            if j == k:
                continue
            prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
        return prod
    return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]


@torch.no_grad()
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    ds = []
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        d = to_d(x, sigmas[i], denoised)
        ds.append(d)
        if len(ds) > order:
            ds.pop(0)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        cur_order = min(i + 1, order)
        coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
        x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
    return x