File size: 1,601 Bytes
38c9894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import streamlit as st
import time

# Streamlit App
st.title("AI Model Fine-Tuning πŸ€–")

# Intro
st.write("""
Welcome to the AI model fine-tuning! Here, we'll take a vanilla AI model and 
follow the fine-tuning process to adapt it for a specific task. Let's get started!
""")

# Select model type
model_type = st.selectbox("Choose a vanilla AI model:", ["BERT", "LLaMa 2", "ResNet", "Transformer"])
st.write(f"You've selected the {model_type} model!")

# Specify dataset
dataset_name = st.text_input("Enter the name of the dataset for fine-tuning:", "Knowledgebase-Dataset.csv")
if dataset_name:
    st.write(f"We will use the {dataset_name} dataset for fine-tuning!")

# Button to start the fine-tuning
if st.button("Start Fine-Tuning"):
    st.write("Fine-tuning started... Please wait!")
    
    # Simulate progress bar for fine-tuning
    latest_iteration = st.empty()
    bar = st.progress(0)
    for i in range(100):
        # Update the progress bar with each iteration.
        latest_iteration.text(f"Fine-tuning progress: {i+1}%")
        bar.progress(i + 1)
        time.sleep(0.35)

    st.write("Fine-tuning completed! Your model is now ready to deploy πŸš€")

# Sidebar for additional settings (pretend parameters)
st.sidebar.title("Fine-Tuning Settings")
learning_rate = st.sidebar.slider("Learning Rate:", 0.001, 0.1, 0.01, 0.001)
batch_size = st.sidebar.slider("Batch Size:", 8, 128, 32)
epochs = st.sidebar.slider("Number of Epochs:", 1, 10, 3)
st.sidebar.write(f"Learning Rate: {learning_rate}")
st.sidebar.write(f"Batch Size: {batch_size}")
st.sidebar.write(f"Epochs: {epochs}")