File size: 34,173 Bytes
84672ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d795e
84672ab
 
 
 
e3d795e
84672ab
 
 
 
e3d795e
84672ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d795e
84672ab
 
 
 
e3d795e
84672ab
 
 
 
e3d795e
84672ab
 
 
 
e3d795e
84672ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fd7dd
84672ab
 
 
 
 
 
7783828
84672ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf731f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
from transformers import TextClassificationPipeline
from transformers import AutoTokenizer
from transformers import pipeline
import evaluate
import gradio as gr
import torch
import random
from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_metric
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import streamlit as st
from textblob import TextBlob
from streamlit_extras.switch_page_button import switch_page
from transformers import YolosImageProcessor, YolosForObjectDetection
from PIL import Image
import torch
import requests
import numpy as np
import torchvision
from torchvision.io import read_image
from torchvision.utils import draw_bounding_boxes
from transformers import DetrImageProcessor, DetrForObjectDetection
from transformers import DetrImageProcessor, DetrForObjectDetection
from transformers import pipeline
import torch
from transformers import PegasusForConditionalGeneration, PegasusTokenizer


st.set_page_config(layout="wide")
def get_models(prompt):
  #prompt = input("Enter your AI task idea:")
  response = pipe(prompt)
  print("AI Model Idea: ", prompt,"\n")

  x = pd.json_normalize(response[0])
  # x.nlargest(3,['score'])["label"].values
  knowledge_base_tasks = ['depth-estimation', 'image-classification', 'image-segmentation',
        'image-to-image', 'object-detection', 'video-classification',
        'unconditional-image-generation', 'zero-shot-image-classification',
        'conversational', 'fill-mask', 'question-answering',
        'sentence-similarity', 'summarization', 'table-question-answering',
        'text-classification', 'text-generation', 'token-classification',
        'translation', 'zero-shot-classification']

  temp = []
  for label_code in x.nlargest(3,['score'])["label"].values:
    temp.append(label_code[6:])
  # temp

  cat_to_model = {}
  top_cats = []

  for i in range(len(temp)):
    print("Possible Category ",i+1," : ",knowledge_base_tasks[int(temp[i])])
    print("Top three models for this category are:",models_list[models_list["pipeline_tag"] == knowledge_base_tasks[int(temp[i])]].nlargest(3,"downloads")["modelId"].values)
    cat_to_model[knowledge_base_tasks[int(temp[i])]] = models_list[models_list["pipeline_tag"] == knowledge_base_tasks[int(temp[i])]].nlargest(3,"downloads")["modelId"].values
    top_cats.append(knowledge_base_tasks[int(temp[i])])
    # models_list[models_list["pipeline_tag"] == "image-classification"].nlargest(3,"downloads")["modelId"].values
    print()
    print("Returning category-models dictionary..")
  return top_cats,cat_to_model



def get_top_3(top_cat):
    
    top_3_df = pd.read_csv("./Top_3_models.csv")
    top_3 = []
    for i in range(top_3_df.shape[0]):
        if top_3_df["Category"].iloc[i].lower() == top_cat:
                top_3.append(top_3_df["Model_1"].iloc[i])
                top_3.append(top_3_df["Model_2"].iloc[i])
                top_3.append(top_3_df["Model_3"].iloc[i])
                break
    return top_3





def get_top_3_a(prompt,pipe):
    response = pipe(prompt)
    x = pd.json_normalize(response[0])
    temp = []
    for label_code in x.nlargest(3,['score'])["label"].values:
        temp.append(label_code[6:])
    knowledge_base_tasks = ['depth-estimation', 'image-classification', 'image-segmentation',
        'image-to-image', 'object-detection', 'video-classification',
        'unconditional-image-generation', 'zero-shot-image-classification',
        'conversational', 'fill-mask', 'question-answering',
        'sentence-similarity', 'summarization', 'table-question-answering',
        'text-classification', 'text-generation', 'token-classification',
        'translation', 'zero-shot-classification']
    
    top_cat = knowledge_base_tasks[int(temp[0])]
    
    
    top_3_df = pd.read_csv("./Top_3_models.csv")
    top_3 = []
    for i in range(top_3_df.shape[0]):
        if top_3_df["Category"].iloc[i] == top_cat:
                top_3.append(top_3_df["Model_1"].iloc[i])
                top_3.append(top_3_df["Model_2"].iloc[i])
                top_3.append(top_3_df["Model_3"].iloc[i])
                break
    return top_cat,top_3



            
def get_response(input_text,model_name):
    torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
    tokenizer = PegasusTokenizer.from_pretrained(model_name)
    model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
    batch = tokenizer([input_text],truncation=True,padding='longest',max_length=1024, return_tensors="pt").to(torch_device)
    gen_out = model.generate(**batch,max_length=128,num_beams=5, num_return_sequences=1, temperature=1.5)
    output_text = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
    return output_text

            
def summarizer (models, data):
    model_Eval = {}
    for i in range (len(models)):
        # print(models[i])
        if models[i] == 'tuner007/pegasus_summarizer':
            model_name = 'tuner007/pegasus_summarizer'

            result = get_response(data,model_name)
            rouge = evaluate.load('rouge')
            # print("345",rouge.compute(predictions=[result],references=[data]))
            print(type(result), type([data]))
            quality = rouge.compute(predictions=[result[0]],references=[data])
            model_Eval[models[i]] = {"Score":quality,"Result": result}
        else:
            summarizer_model = pipeline("summarization", model = models[i])
            print(models[i], summarizer_model(data))
            try:
                result = summarizer_model(data)[0]["summary_text"]
                rouge = evaluate.load('rouge')
                # print("345",rouge.compute(predictions=[result],references=[data]))
                quality = rouge.compute(predictions=[result],references=[data])
                model_Eval[models[i]] = {"Score":quality,"Result": result}
            except:
                print("Model {} has issues.".format(models[i]))

    return model_Eval




def best_model (analysis, data):
    best_model_score = 0
    best_model_name = ""
    best_model_result = ""
    temp2 = 0
    for model in analysis.keys():
        temp1 = analysis[model]["Score"]["rougeLsum"]
        if temp1 > temp2:
            temp2 = analysis[model]["Score"]["rougeLsum"]
            best_model_score = analysis[model]["Score"]
            best_model_name = model
            best_model_result = analysis[model]["Result"]

    return best_model_name, best_model_score,data[:50],best_model_result.replace("\n","")



def text_summarization():
    top_models = get_top_3("summarization")
#     st.write("Upload your file: ")
#     uploaded_files = ""
#     uploaded_files = st.file_uploader("Choose your file", accept_multiple_files=True)




    option = st.selectbox(
    'What text would you like AI to summarize for you now ?',
    ("Choose text files below:",'How to Win friends - Text', 'The Age of Intelligent Machines', 'The Singularity is Near - Ray Kurzweil.txt')) #add 2 other options of files here

    if option == 'How to Win friends - Text' or option == 'The Age of Intelligent Machines' or option == 'The Singularity is Near - Ray Kurzweil.txt':### update book text files here
        st.write('You selected:', option)

    if option == 'How to Win friends - Text': # add text
        name = "How_to_win_friends.txt"
        st.write("Selected file for analyis is: How_to_win_friends.txt")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)

    if option == 'The Age of Intelligent Machines':
        name = "The Age of Intelligent Machines.txt"
        st.write("Selected file for analyis is: The Age of Intelligent Machines.txt")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)

    if option == "The Singularity is Near - Ray Kurzweil.txt":
        name = "The Singularity is Near - Ray Kurzweil.txt"
        st.write("The Singularity is Near - Ray Kurzweil.txt")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)   
        
    if st.button("Accept"):
        global file_data
#         st.write("filename:", uploaded_files)
#         for uploaded_file in uploaded_files:
# #             print("here")
#             file_data = open(uploaded_file.name,encoding="utf8").read()
#             st.write("filename:", uploaded_file.name)
#     #         st.write(file_data[:500])
# #         print("before summarizer")
#         print(file_data[:50])
        file_data = open(name,encoding="utf8").read()
        
        analysis = summarizer(models = top_models, data = file_data[:500])

        x,c,v,b = best_model(analysis,file_data[:500])
#         st.write("Best model for Task: ",z)

        st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Best Model with Summarization Results"}</p>', unsafe_allow_html=True)
        st.write("\nBest model name: ",x)
#         st.write("\nBest model Score: ",c)
        
        st.write("Best Model Rouge Scores: ")
        st.write("Rouge 1 Score: ",c["rouge1"])
        st.write("Rouge 2 Score: ",c["rouge2"])
        st.write("Rouge L Score: ",c["rougeL"])
        st.write("Rouge LSum Score: ",c["rougeLsum"])
    
        st.write("\nOriginal Data first 50 characters: ", v)
        st.write("\nBest Model Result: ",b)


#         print("between summarizer analysis")
        st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 1: Bart"}</p>', unsafe_allow_html=True)
#         st.write("Summarization Results for Model 1")
        st.write("Model name: facebook/bart-large-cnn")
        st.write("Rouge Scores: ")
        st.write("Rouge 1 Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rouge1"])
        st.write("Rouge 2 Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rouge2"])
        st.write("Rouge L Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rougeL"])
        st.write(f"Rouge LSum Score: ",analysis["facebook/bart-large-cnn"]["Score"]["rougeLsum"])
        st.write("Result: ", analysis["facebook/bart-large-cnn"]["Result"])
        
        st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 2: Pegasus"}</p>', unsafe_allow_html=True)        
#         st.write("Summarization Results for Model 2")
        st.write("Model name: tuner007/pegasus_summarizer")
        st.write("Rouge Scores: ")
        st.write("Rouge 1 Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rouge1"])
        st.write("Rouge 2 Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rouge2"])
        st.write("Rouge L Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rougeL"])
        st.write("Rouge LSum Score: ",analysis["tuner007/pegasus_summarizer"]["Score"]["rougeLsum"])
        st.write("Result: ", analysis["tuner007/pegasus_summarizer"]["Result"][0])
        
        
        
        st.markdown(f'<p style="color: #012d51;font-size:32px;border-radius:%;">{"Summarization Results for Model 3: Distilbart"}</p>', unsafe_allow_html=True)        
#         st.write("Summarization Results for Model 3")
        st.write("Model name: sshleifer/distilbart-cnn-12-6")
        st.write("Rouge Scores: ")
        st.write("Rouge 1 Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rouge1"])
        st.write("Rouge 2 Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rouge2"])
        st.write("Rouge L Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rougeL"])
        st.write("Rouge LSum Score: ",analysis["sshleifer/distilbart-cnn-12-6"]["Score"]["rougeLsum"])
        
        st.write("Result: ", analysis["sshleifer/distilbart-cnn-12-6"]["Result"])

        
        
        
#OBJECT DETECTION

def yolo_tiny(name):
    image = read_image(name)

    model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny')
    image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")

    inputs = image_processor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    # model predicts bounding boxes and corresponding COCO classes
    logits = outputs.logits
    bboxes = outputs.pred_boxes


    # print results
    target_sizes = torch.tensor([image.shape[::-1][:2]])

    results = image_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]

    label_ = []
    bboxes = []

    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i, 2) for i in box.tolist()]
        print(
            f"Detected {model.config.id2label[label.item()]} with confidence "
            f"{round(score.item(), 3)} at location {box}"
        )
        
        label_.append(model.config.id2label[label.item()])
        bboxes.append(np.asarray(box,dtype="int"))
    bboxes = torch.tensor(bboxes, dtype=torch.int)

    img=draw_bounding_boxes(image, bboxes,labels = label_, width=3)
    img = torchvision.transforms.ToPILImage()(img)
    return img
# img.show()



def resnet_101(name):
    image = read_image(name)
    processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101")
    model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")

    inputs = processor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    # convert outputs (bounding boxes and class logits) to COCO API
    # let's only keep detections with score > 0.9
    target_sizes = torch.tensor([image.shape[::-1][:2]])
    results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
    label_ = []
    bboxes = []
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i, 2) for i in box.tolist()]
        print(
                f"Detected {model.config.id2label[label.item()]} with confidence "
                f"{round(score.item(), 3)} at location {box}")
        label_.append(model.config.id2label[label.item()])
        bboxes.append(np.asarray(box,dtype="int"))
    bboxes = torch.tensor(bboxes, dtype=torch.int)


    bboxes = torch.tensor(bboxes, dtype=torch.int)

    img=draw_bounding_boxes(image, bboxes,labels = label_, width=3)
    img = torchvision.transforms.ToPILImage()(img)
    return img





def resnet_50(name):
    image = read_image(name)
    processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
    model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")

    inputs = processor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    # convert outputs (bounding boxes and class logits) to COCO API
    # let's only keep detections with score > 0.9
    target_sizes = torch.tensor([image.shape[::-1][:2]])
    results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
    label_ = []
    bboxes = []
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i, 2) for i in box.tolist()]
        print(
                f"Detected {model.config.id2label[label.item()]} with confidence "
                f"{round(score.item(), 3)} at location {box}"
        )
        label_.append(model.config.id2label[label.item()])
        bboxes.append(np.asarray(box,dtype="int"))
    bboxes = torch.tensor(bboxes, dtype=torch.int)

    bboxes = torch.tensor(bboxes, dtype=torch.int)

    img=draw_bounding_boxes(image, bboxes,labels = label_, width=3)
    img = torchvision.transforms.ToPILImage()(img)
    return img



def object_detection():
#     st.write("Upload your image: ")
#     uploaded_files = ""
#     uploaded_files = st.file_uploader("Choose a image file", accept_multiple_files=True)

    option = st.selectbox(
    'What image you want for analysis?',
    ("Choose an image for object detection analysis from the options below:",'Cat and Dog', '2 lazy cats chilling on a couch', 'An astronaut riding wild horse'))

    if option == 'Cat and Dog' or option == '2 lazy cats chilling on a couch' or option == 'An astronaut riding wild horse':
        st.write('You selected:', option)
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)

    if option == 'Cat and Dog':
        name = "cat_dog.jpg"
        st.image("cat_dog.jpg")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)

    if option == '2 lazy cats chilling on a couch':
        name = "cat_remote.jpg"
        st.image("cat_remote.jpg")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)

    if option == 'An astronaut riding wild horse':
        name = "astronaut_rides_horse.png"
        st.image("astronaut_rides_horse.png")
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Thank you for your patience. AI is generating 3 outputs to compare"}</p>', unsafe_allow_html=True)
        
    if st.button("Accept"):
    #     global file_data
#         st.write("filename:", uploaded_files)
#         for uploaded_file in uploaded_files:
    #             print("here")
    #         file_data = open(uploaded_file.name).read()
        st.write("filename:", name)
#         name = uploaded_file.name
        st.image([yolo_tiny(name),resnet_101(name),resnet_50(name)],caption=["hustvl/yolos-tiny","facebook/detr-resnet-101","facebook/detr-resnet-50"])


def task_categorization_model_predictions():
    st.image("./panelup.png")

    # st.title("Text Analysis App")

    data = "" 

    classifier = pipeline("zero-shot-classification",model="facebook/bart-large-mnli")

    global check

    st.markdown(f'<p style="color: #012d51;font-size:18px;border-radius:%;">{"Write down below the description of your AI application in few sentences:"}</p>', unsafe_allow_html=True)

    prompt = st.text_input(" ")

    st.write("")
    st.write("")

    if prompt != "":
    #     sbert_saved_model = torch.load("Sbert_saved_model", map_location=torch.device('cpu')).to("cpu")
    #     model = sbert_saved_model.to("cpu")
    #     tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
    #     pipe = TextClassificationPipeline(model= model, tokenizer=tokenizer, return_all_scores=True)
    #     # outputs a list of dicts like [[{'label': 'NEGATIVE', 'score': 0.0001223755971295759},  {'label': 'POSITIVE', 'score': 0.9998776316642761}]]

    #     # prompt = ["What is the the best ai for putting text report into data table?","How can I generate car sales agreement with ai model?","AI model to detect burglar on 48 hours of cctv video footage","I need Ai model help me with rewriting 50 financial statements emails into one summary report ?","I need a model for extracting person from an image"]
    #     # responses = pipe(prompt)


    #     models_list = pd.read_csv("models.csv")
    # #     st.write(get_top_3(prompt))

    #     top_cat, top_models = get_top_3(prompt)
    #     # prompt = input("Enter your AI task idea:")
    # #     top_cats,cat_to_models = get_models(prompt)

    # #     top_models = cat_to_models[top_cats[0]]

    #     top_cat = "  " + top_cat[0].upper() + top_cat[1:]



        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized AI Domain: "}</p>', unsafe_allow_html=True)

        domains = ["Computer Vision Task","Natural Language Processing Problem","Audio Operations Problem","Tabular Data Task","Reinforcement Learning Problem","Time Series Forecasting Problem"]



        #st.write(classifier(prompt, domains))
        domain = classifier(prompt, domains)["labels"][0]

        st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{domain}</p>', unsafe_allow_html=True)
    #     st.write("Recommended AI Domain Type: ",top_cat)
        check = 0
        if st.button("This seems accurate"):
            check = 1
        if st.button("Show me other likely category recommendations:"):
            if domain == "Tabular Data Problem":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1
                if st.button("Multimodal AI Model"):
                    domain = "Multimodal AI Model"
                    check = 1
                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
        #         if st.button("Tabular Data Task"):
        #             domain = "Tabular Data Task"
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1


            if domain == "Computer Vision Task":
        #         if st.button("Computer Vision Task"):
        #             domain = "Computer Vision Task"
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1

                if st.button("Multimodal AI Model"):
                    domain = "Multimodal AI Model"
                    check = 1

                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1


            if domain == "Natural Language Processing Problem":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
        #         if st.button("Natural Language Processing Problem"):
        #             domain = "Natural Language Processing Problem"
                if st.button("Multimodal AI Model"):
                    domain = "multimodal"
                    check = 1
                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1


            if domain == "Multimodal AI Model":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1
        #         if st.button("Multimodal AI Model"):
        #             domain = "Multimodal AI Model"
                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1


            if domain == "audio":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1
                if st.button("Multimodal AI Model"):
                    domain = "Multimodal AI Model"
                    check = 1
        #         if st.button("Audio Operations Problem"):
        #             domain = "Audio Operations Problem"
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1


            if domain == "reinforcement-learning":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1
                if st.button("Multimodal AI Model"):
                    domain = "multimodal"
                    check = 1
                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
        #         if st.button("Reinforcement Learning Problem"):
        #             domain = "Reinforcement Learning Problem"
                if st.button("Time Series Forecasting Problem"):
                    domain = "Time Series Forecasting Problem"
                    check = 1

            if domain == "Time Series Forecasting":
                if st.button("Computer Vision Task"):
                    domain = "Computer Vision Task"
                    check = 1
                if st.button("Natural Language Processing Problem"):
                    domain = "Natural Language Processing Problem"
                    check = 1
                if st.button("Multimodal AI Model"):
                    domain = "Multimodal AI Model"
                    check = 1
                if st.button("Audio Operations Problem"):
                    domain = "Audio Operations Problem"
                    check = 1
                if st.button("Tabular Data Task"):
                    domain = "Tabular Data Task"
                    check = 1
                if st.button("Reinforcement Learning Problem"):
                    domain = "Reinforcement Learning Problem"
                    check = 1
        #         if st.button("Time Series Forecasting Problem"):
        #             domain = "Time Series Forecasting Problem"

    #     st.write("Recommended Models for category: ",top_cats[0], " are:",top_models)

    #     st.write("Recommended Task category: ",top_models[0])



        knowledge_base_tasks = {"Computer Vision Task":['depth-estimation', 'image-classification', 'image-segmentation',
            'image-to-image', 'object-detection', 'video-classification',
            'unconditional-image-generation', 'zero-shot-image-classification'],"Natural Language Processing Problem":[
            'conversational', 'fill-mask', 'question-answering',
            'sentence-similarity', 'summarization', 'table-question-answering',
            'text-classification', 'text-generation', 'token-classification',
            'translation', 'zero-shot-classification'],"Audio Operations Problem":["audio-classification","audio-to-audio","automatic-speech-recognition",
            "text-to-speech"],"Tabular Data Task":["tabular-classification","tabular-regression"],"others":["document-question-answering",
            "feature-extraction","image-to-text","text-to-image","text-to-video","visual-question-answering"],
            "Reinforcement Learning Problem":["reinforcement-learning"],"time-series-forecasting":["time-series-forecasting"]}    

    #     st.write(check)
    #     st.write(domain)
        if check == 1:

            category = classifier(prompt, knowledge_base_tasks[domain])["labels"][0]


            st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized sub category in Domain: "+domain}</p>', unsafe_allow_html=True)

            st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{category}</p>', unsafe_allow_html=True)


            top_models = get_top_3(category)
            #st.write(top_models)
            st.markdown(f'<p style=" margin-left: 0px;color: #012d51;font-size:18px;border-radius:%;">{"The best models selected for this domain:"}</p>', unsafe_allow_html=True)


            st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"1- "+top_models[0]}</p>', unsafe_allow_html=True)

            st.image("./buttons1.png")

    #         if st.button("Show more"): 

            st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"2- "+top_models[1]}</p>', unsafe_allow_html=True)
            st.image("./buttons1.png")


            st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"3- "+top_models[2]}</p>', unsafe_allow_html=True)
            st.image("./buttons1.png")



    
    
    
    
def model_selector_sbert():
    
    st.image("./panelup.png")

    # st.title("Text Analysis App")

    data = "" 


    st.markdown(f'<p style="color: #012d51;font-size:18px;border-radius:%;">{"Please, describe your AI application below:"}</p>', unsafe_allow_html=True)

    prompt = st.text_input(" ")

    st.write("")
    st.write("")

    if prompt != "":
        sbert_saved_model = torch.load("Sbert_saved_model", map_location=torch.device('cpu')).to("cpu")
        model = sbert_saved_model.to("cpu")
        tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
        pipe = TextClassificationPipeline(model= model, tokenizer=tokenizer, return_all_scores=True)
        # outputs a list of dicts like [[{'label': 'NEGATIVE', 'score': 0.0001223755971295759},  {'label': 'POSITIVE', 'score': 0.9998776316642761}]]

        # prompt = ["What is the the best ai for putting text report into data table?","How can I generate car sales agreement with ai model?","AI model to detect burglar on 48 hours of cctv video footage","I need Ai model help me with rewriting 50 financial statements emails into one summary report ?","I need a model for extracting person from an image"]
        # responses = pipe(prompt)


        models_list = pd.read_csv("models.csv")
    #     st.write(get_top_3(prompt))

        top_cat, top_models = get_top_3_a(prompt,pipe)
        # prompt = input("Enter your AI task idea:")
    #     top_cats,cat_to_models = get_models(prompt)

    #     top_models = cat_to_models[top_cats[0]]

        top_cat = "  " + top_cat[0].upper() + top_cat[1:]
        st.markdown(f'<p style="color: #012d51;font-size:24px;border-radius:%;">{"Recognized AI Domain Category: "}</p>', unsafe_allow_html=True)

        st.markdown(f'<p style="background-color:#12d51; color:#1782ea;font-size:18px;border-radius:%;">{top_cat}</p>', unsafe_allow_html=True)
    #     st.write("Recommended AI Domain Type: ",top_cat)
    #     st.write("Recommended Models for category: ",top_cats[0], " are:",top_models)

    #     st.write("Recommended Task category: ",top_models[0])


        st.markdown(f'<p style=" margin-left: 0px;color: #012d51;font-size:18px;border-radius:%;">{"The best models selected for this task:"}</p>', unsafe_allow_html=True)


        st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"1- "+top_models[0]}</p>', unsafe_allow_html=True)

        st.image("./buttons1.png")

        if st.button("Show more"): 

            st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"2- "+top_models[1]}</p>', unsafe_allow_html=True)
            st.image("./buttons1.png")


            st.markdown(f'<p style="margin-left: 0px;background-color:#e1e1e1; color:#012d51;font-size:18px;border-radius:%;">{"3- "+top_models[2]}</p>', unsafe_allow_html=True)
            st.image("./buttons1.png")



    
page_names_to_funcs = {
    "Select the best Model for your AI app":model_selector_sbert,
    "Compare Model Outputs on Object Detection": object_detection,
    "Compare Model Outputs on Text Summarization": text_summarization
}

demo_name = st.sidebar.selectbox("Choose a demo of model selector or compare inference outputs:", page_names_to_funcs.keys())
page_names_to_funcs[demo_name]()