Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,119 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
-
os.system("git clone https://github.com/
|
6 |
|
7 |
-
|
8 |
|
9 |
-
os.mkdir("outputs")
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
title = "Projected GAN"
|
19 |
description = "Gradio demo for Projected GANs Converge Faster, Pokemon. To use it, add seed, or click one of the examples to load them. Read more at the links below. We’re getting a lot of traffic from Hacker News so we added 10 cached examples"
|
|
|
1 |
+
import sys
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
|
6 |
+
os.system("git clone https://github.com/autonomousvision/projected_gan.git")
|
7 |
|
8 |
+
sys.path.append("projected_gan")
|
9 |
|
|
|
10 |
|
11 |
+
"""Generate images using pretrained network pickle."""
|
12 |
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import click
|
18 |
+
import dnnlib
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
|
23 |
+
import legacy
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
|
27 |
+
def parse_range(s: Union[str, List]) -> List[int]:
|
28 |
+
'''Parse a comma separated list of numbers or ranges and return a list of ints.
|
29 |
+
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
|
30 |
+
'''
|
31 |
+
if isinstance(s, list): return s
|
32 |
+
ranges = []
|
33 |
+
range_re = re.compile(r'^(\d+)-(\d+)$')
|
34 |
+
for p in s.split(','):
|
35 |
+
m = range_re.match(p)
|
36 |
+
if m:
|
37 |
+
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
|
38 |
+
else:
|
39 |
+
ranges.append(int(p))
|
40 |
+
return ranges
|
41 |
+
|
42 |
+
#----------------------------------------------------------------------------
|
43 |
+
|
44 |
+
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
|
45 |
+
'''Parse a floating point 2-vector of syntax 'a,b'.
|
46 |
+
Example:
|
47 |
+
'0,1' returns (0,1)
|
48 |
+
'''
|
49 |
+
if isinstance(s, tuple): return s
|
50 |
+
parts = s.split(',')
|
51 |
+
if len(parts) == 2:
|
52 |
+
return (float(parts[0]), float(parts[1]))
|
53 |
+
raise ValueError(f'cannot parse 2-vector {s}')
|
54 |
+
|
55 |
+
#----------------------------------------------------------------------------
|
56 |
+
|
57 |
+
def make_transform(translate: Tuple[float,float], angle: float):
|
58 |
+
m = np.eye(3)
|
59 |
+
s = np.sin(angle/360.0*np.pi*2)
|
60 |
+
c = np.cos(angle/360.0*np.pi*2)
|
61 |
+
m[0][0] = c
|
62 |
+
m[0][1] = s
|
63 |
+
m[0][2] = translate[0]
|
64 |
+
m[1][0] = -s
|
65 |
+
m[1][1] = c
|
66 |
+
m[1][2] = translate[1]
|
67 |
+
return m
|
68 |
+
|
69 |
+
#----------------------------------------------------------------------------
|
70 |
+
|
71 |
+
|
72 |
+
def generate_images(seeds):
|
73 |
+
"""Generate images using pretrained network pickle.
|
74 |
+
Examples:
|
75 |
+
\b
|
76 |
+
# Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
|
77 |
+
python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
|
78 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
|
79 |
+
\b
|
80 |
+
# Generate uncurated images with truncation using the MetFaces-U dataset
|
81 |
+
python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
|
82 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
|
83 |
+
"""
|
84 |
+
|
85 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
86 |
+
with dnnlib.util.open_url('https://s3.eu-central-1.amazonaws.com/avg-projects/projected_gan/models/pokemon.pkl') as f:
|
87 |
+
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
|
88 |
+
|
89 |
+
|
90 |
+
# Labels.
|
91 |
+
label = torch.zeros([1, G.c_dim], device=device)
|
92 |
+
|
93 |
+
|
94 |
+
# Generate images.
|
95 |
+
for seed_idx, seed in enumerate(seeds):
|
96 |
+
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
|
97 |
+
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device).float()
|
98 |
+
|
99 |
+
# Construct an inverse rotation/translation matrix and pass to the generator. The
|
100 |
+
# generator expects this matrix as an inverse to avoid potentially failing numerical
|
101 |
+
# operations in the network.
|
102 |
+
if hasattr(G.synthesis, 'input'):
|
103 |
+
m = make_transform('0,0', 0)
|
104 |
+
m = np.linalg.inv(m)
|
105 |
+
G.synthesis.input.transform.copy_(torch.from_numpy(m))
|
106 |
+
|
107 |
+
img = G(z, label, truncation_psi=1, noise_mode='const')
|
108 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
109 |
+
pilimg = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
110 |
+
return pilimg
|
111 |
+
|
112 |
+
|
113 |
+
def inference(seedin):
|
114 |
+
listseed = [int(seedin)]
|
115 |
+
output = generate_images(listseed)
|
116 |
+
return output
|
117 |
|
118 |
title = "Projected GAN"
|
119 |
description = "Gradio demo for Projected GANs Converge Faster, Pokemon. To use it, add seed, or click one of the examples to load them. Read more at the links below. We’re getting a lot of traffic from Hacker News so we added 10 cached examples"
|