import inspect from typing import Dict, List, Union import jsonlines import requests import streamlit as st from evaluate import load from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics from tqdm import tqdm AUTOTRAIN_TASK_TO_HUB_TASK = { "binary_classification": "text-classification", "multi_class_classification": "text-classification", "entity_extraction": "token-classification", "extractive_question_answering": "question-answering", "translation": "translation", "summarization": "summarization", "image_binary_classification": "image-classification", "image_multi_class_classification": "image-classification", } HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()} LOGS_REPO = "evaluation-job-logs" def get_auth_headers(token: str, prefix: str = "autonlp"): return {"Authorization": f"{prefix} {token}"} def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response: """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" try: response = requests.post( url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params, ) except requests.exceptions.ConnectionError: print("❌ Failed to reach AutoNLP API, check your internet connection") response.raise_for_status() return response def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response: """HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached""" try: response = requests.get( url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params, ) except requests.exceptions.ConnectionError: print(f"❌ Failed to reach {path}, check your internet connection") response.raise_for_status() return response def get_metadata(dataset_name: str) -> Union[Dict, None]: data = dataset_info(dataset_name) if data.cardData is not None and "train-eval-index" in data.cardData.keys(): return data.cardData["train-eval-index"] else: return None def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]: """ Returns all model IDs that are compatible with the given task and dataset names. Args: task (`str`): The task to search for. dataset_names (`List[str]`): A list of dataset names to search for. Returns: A list of model IDs, sorted alphabetically. """ compatible_models = [] # Include models trained on SQuAD datasets, since these can be evaluated on # other SQuAD-like datasets if task == "extractive_question_answering": dataset_ids.extend(["squad", "squad_v2"]) # TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain for dataset_id in dataset_ids: model_filter = ModelFilter( task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_id, library=["transformers", "pytorch"], ) compatible_models.extend(HfApi().list_models(filter=model_filter)) return sorted(set([model.modelId for model in compatible_models])) def get_key(col_mapping, val): for key, value in col_mapping.items(): if val == value: return key return "key doesn't exist" def format_col_mapping(col_mapping: dict) -> dict: for k, v in col_mapping["answers"].items(): col_mapping[f"answers.{k}"] = f"answers.{v}" del col_mapping["answers"] return col_mapping def commit_evaluation_log(evaluation_log, hf_access_token=None): logs_repo_url = f"https://huggingface.co./datasets/autoevaluate/{LOGS_REPO}" logs_repo = Repository( local_dir=LOGS_REPO, clone_from=logs_repo_url, repo_type="dataset", private=True, use_auth_token=hf_access_token, ) logs_repo.git_pull() with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r: lines = [] for obj in r: lines.append(obj) lines.append(evaluation_log) with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer: for job in lines: writer.write(job) logs_repo.push_to_hub( commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}" ) print("INFO -- Pushed evaluation logs to the Hub") @st.experimental_memo def get_supported_metrics(): """Helper function to get all metrics compatible with evaluation service. Requires all metric dependencies installed in the same environment, so wait until https://github.com/huggingface/evaluate/issues/138 is resolved before using this. """ metrics = [metric.id for metric in list_metrics()] supported_metrics = [] for metric in tqdm(metrics): # TODO: this currently requires all metric dependencies to be installed # in the same environment. Refactor to avoid needing to actually load # the metric. try: print(f"INFO -- Attempting to load metric: {metric}") metric_func = load(metric) except Exception as e: print(e) print("WARNING -- Skipping the following metric, which cannot load:", metric) continue argspec = inspect.getfullargspec(metric_func.compute) if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs: # We require that "references" and "predictions" are arguments # to the metric function. We also require that the other arguments # besides "references" and "predictions" have defaults and so do not # need to be specified explicitly. defaults = True for key, value in argspec.kwonlydefaults.items(): if key not in ("references", "predictions"): if value is None: defaults = False break if defaults: supported_metrics.append(metric) return supported_metrics