\begin{thebibliography}{10} \providecommand{\natexlab}[1]{#1} \providecommand{\url}[1]{\texttt{#1}} \expandafter\ifx\csname urlstyle\endcsname\relax \providecommand{\doi}[1]{doi: #1}\else \providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi \bibitem[Akshita~Mittel(2018)]{1809.00397} Himanshi~Yadav Akshita~Mittel, Sowmya~Munukutla. \newblock Visual transfer between atari games using competitive reinforcement learning. \newblock \emph{arXiv preprint arXiv:1809.00397}, 2018. \newblock URL \url{http://arxiv.org/abs/1809.00397v1}. \bibitem[Kai~Arulkumaran(2017)]{1708.05866} Miles Brundage Anil Anthony~Bharath Kai~Arulkumaran, Marc Peter~Deisenroth. \newblock A brief survey of deep reinforcement learning. \newblock \emph{arXiv preprint arXiv:1708.05866}, 2017. \newblock URL \url{http://arxiv.org/abs/1708.05866v2}. \bibitem[Kenny~Young(2019)]{1903.03176} Tian~Tian Kenny~Young. \newblock Minatar: An atari-inspired testbed for thorough and reproducible reinforcement learning experiments. \newblock \emph{arXiv preprint arXiv:1903.03176}, 2019. \newblock URL \url{http://arxiv.org/abs/1903.03176v2}. \bibitem[Li~Meng(2021)]{2106.14642} Morten Goodwin Paal~Engelstad Li~Meng, Anis~Yazidi. \newblock Expert q-learning: Deep reinforcement learning with coarse state values from offline expert examples. \newblock \emph{arXiv preprint arXiv:2106.14642}, 2021. \newblock URL \url{http://arxiv.org/abs/2106.14642v3}. \bibitem[Mahipal~Jadeja(2017)]{1709.05067} Agam~Shah Mahipal~Jadeja, Neelanshi~Varia. \newblock Deep reinforcement learning for conversational ai. \newblock \emph{arXiv preprint arXiv:1709.05067}, 2017. \newblock URL \url{http://arxiv.org/abs/1709.05067v1}. \bibitem[Ngan~Le(2021)]{2108.11510} Kashu Yamazaki Khoa Luu Marios~Savvides Ngan~Le, Vidhiwar Singh~Rathour. \newblock Deep reinforcement learning in computer vision: A comprehensive survey. \newblock \emph{arXiv preprint arXiv:2108.11510}, 2021. \newblock URL \url{http://arxiv.org/abs/2108.11510v1}. \bibitem[Qiyue~Yin(2022)]{2212.00253} Shengqi Shen Jun Yang Meijing Zhao Kaiqi Huang Bin Liang Liang~Wang Qiyue~Yin, Tongtong~Yu. \newblock Distributed deep reinforcement learning: A survey and a multi-player multi-agent learning toolbox. \newblock \emph{arXiv preprint arXiv:2212.00253}, 2022. \newblock URL \url{http://arxiv.org/abs/2212.00253v1}. \bibitem[Russell~Kaplan(2017)]{1704.05539} Alexander~Sosa Russell~Kaplan, Christopher~Sauer. \newblock Beating atari with natural language guided reinforcement learning. \newblock \emph{arXiv preprint arXiv:1704.05539}, 2017. \newblock URL \url{http://arxiv.org/abs/1704.05539v1}. \bibitem[Sergey~Ivanov(2019)]{1906.10025} Alexander~D'yakonov Sergey~Ivanov. \newblock Modern deep reinforcement learning algorithms. \newblock \emph{arXiv preprint arXiv:1906.10025}, 2019. \newblock URL \url{http://arxiv.org/abs/1906.10025v2}. \bibitem[Yang~Shao(2022)]{2203.16777} Tadayuki Matsumura Taiki Fuji Kiyoto Ito Hiroyuki~Mizuno Yang~Shao, Quan~Kong. \newblock Mask atari for deep reinforcement learning as pomdp benchmarks. \newblock \emph{arXiv preprint arXiv:2203.16777}, 2022. \newblock URL \url{http://arxiv.org/abs/2203.16777v1}. \end{thebibliography}