File size: 924 Bytes
3df97f4
58a6f46
2274c2b
5d2c0a1
 
 
 
 
58a6f46
5d2c0a1
 
 
 
 
 
58a6f46
5d2c0a1
 
 
 
 
 
 
 
 
 
 
58a6f46
5d2c0a1
 
3df97f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr

gr.load("models/openai/whisper-large-v3").launch(share=True)
# import gradio as gr
# import whisper

# # Load the Whisper model
# model = whisper.load_model("large")

# def transcribe_audio(audio):
#     # Load the audio file
#     audio = whisper.load_audio(audio)
#     # Transcribe the audio using Whisper
#     result = model.transcribe(audio)
#     return result["text"]

# # Create a Gradio interface with both microphone and file upload inputs
# interface = gr.Interface(
#     fn=transcribe_audio,
#     inputs=[
#         gr.Audio(source="microphone", type="filepath", label="Record using Microphone"),
#         gr.Audio(source="upload", type="filepath", label="Upload Audio File")
#     ],
#     outputs="text",
#     live=True,
#     description="Speak into your microphone or upload an audio file to see the transcription in real-time."
# )

# # Launch the Gradio app
# interface.launch()