|
import gradio as gr |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
from src.utils import AutoEvalColumn, fields, make_clickable_names |
|
|
|
df = pd.read_csv("code_eval_board.csv") |
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
def plot_throughput(bs=1): |
|
throughput_column = 'Throughput (tokens/s)' if bs==1 else 'Throughput (tokens/s) bs=50' |
|
|
|
df['symbol'] = 2 |
|
df['color'] = '' |
|
df.loc[df['Models'].str.contains('StarCoder|SantaCoder'), 'color'] = 'orange' |
|
df.loc[df['Models'].str.contains('CodeGen'), 'color'] = 'pink' |
|
df.loc[df['Models'].str.contains('Replit'), 'color'] = 'purple' |
|
df.loc[df['Models'].str.contains('WizardCoder'), 'color'] = 'green' |
|
df.loc[df['Models'].str.contains('CodeGeex'), 'color'] = 'blue' |
|
|
|
fig = go.Figure() |
|
|
|
for i in df.index: |
|
fig.add_trace(go.Scatter( |
|
x=[df.loc[i, throughput_column]], |
|
y=[df.loc[i, 'Average score']], |
|
mode='markers', |
|
marker=dict( |
|
size=[df.loc[i, 'Size (B)'] + 10], |
|
color=df.loc[i, 'color'], |
|
symbol=df.loc[i, 'symbol'] |
|
), |
|
name=df.loc[i, 'Models'], |
|
hovertemplate = |
|
'<b>%{text}</b><br><br>' + |
|
f'{throughput_column}: %{{x}}<br>'+ |
|
'Average Score: %{y}<br>' + |
|
'Peak Memory (MB): ' + str(df.loc[i, 'Peak Memory (MB)']) + '<br>' + |
|
'Human Eval (Python): ' + str(df.loc[i, 'humaneval-python']), |
|
text=[df.loc[i, 'Models']], |
|
showlegend=True |
|
)) |
|
|
|
fig.update_layout( |
|
autosize=False, |
|
width=650, |
|
height=600, |
|
title=f'Average Score Vs Throughput (A100-80GB, Float16, Batch Size <b>{bs}</b>)', |
|
xaxis_title=f'{throughput_column}', |
|
yaxis_title='Average Code Score', |
|
) |
|
return fig |
|
|
|
|
|
def filter_items(df, leaderboard_table, query): |
|
if query == "all": |
|
return df[leaderboard_table.columns] |
|
else: |
|
query = query[0] |
|
filtered_df = df[(df["T"] == query)] |
|
return filtered_df[leaderboard_table.columns] |
|
|
|
|
|
def search_table(df, leaderboard_table, query): |
|
filtered_df = df[(df["Models"].str.contains(query, case=False))] |
|
return filtered_df[leaderboard_table.columns] |
|
|
|
|
|
df = make_clickable_names(df) |
|
|
|
|
|
demo = gr.Blocks() |
|
with demo: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"""<div style="text-align: center;"><h1> β Multilingual <span style='color: #e6b800;'>Code</span> Models <span style='color: #e6b800;'>Evaluation</span></h1></div>\ |
|
<br>\ |
|
<p>Inspired from the <a href="https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a> and <a href="https://huggingface.co./spaces/optimum/llm-perf-leaderboard">π€ Open LLM-Perf Leaderboard ποΈ</a>, we compare performance of base multilingual code generation models on <a href="https://huggingface.co./datasets/openai_humaneval">HumanEval</a> benchmark and <a href="https://huggingface.co./datasets/nuprl/MultiPL-E">MultiPL-E</a>. We also measure throughput and provide\ |
|
information about the models. We only compare pre-trained multilingual code models, that people can start from as base models for their trainings.</p>""" |
|
) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.Column(): |
|
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: |
|
with gr.TabItem("π Evaluation table", id=0): |
|
with gr.Column(): |
|
|
|
shown_columns = gr.CheckboxGroup( |
|
choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]], |
|
value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder="π Search for your model and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
filter_columns = gr.Radio( |
|
label="β Filter model types", |
|
choices = ["all", "π’ base", "πΆ instruction-tuned"], |
|
value="all", |
|
elem_id="filter-columns" |
|
) |
|
|
|
|
|
|
|
leaderboard_df = gr.components.Dataframe( |
|
value=df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value], |
|
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table") |
|
|
|
hidden_leaderboard_df = gr.components.Dataframe( |
|
value=df, headers=COLS, datatype=["str" for _ in range(len(COLS))], visible=False |
|
) |
|
search_bar.submit( |
|
search_table, |
|
[hidden_leaderboard_df, leaderboard_df, search_bar], |
|
leaderboard_df, |
|
) |
|
filter_columns.change(filter_items, [hidden_leaderboard_df, leaderboard_df, filter_columns], leaderboard_df) |
|
|
|
with gr.TabItem("π Performance Plot", id=1): |
|
with gr.Row(): |
|
bs_1_plot = gr.components.Plot( |
|
value=plot_throughput(bs=1), |
|
elem_id="bs1-plot", |
|
show_label=False, |
|
) |
|
bs_50_plt = gr.components.Plot( |
|
value=plot_throughput(bs=50), |
|
elem_id="bs50-plot", |
|
show_label=False, |
|
) |
|
with gr.Row(): |
|
gr.Markdown( |
|
"""Notes: |
|
<ul> |
|
<li> Throughputs and peak memory usage are measured using <a href="https://github.com/huggingface/optimum-benchmark/tree/main">Optimum-Benchmark</a> which powers <a href="https://huggingface.co./spaces/optimum/llm-perf-leaderboard">Open LLM-Perf Leaderboard</a>. (0 throughput corresponds to OOM).</li> |
|
<li> All models were evaluated with the <a href="https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main">bigcode-evaluation-harness</a> with top-p=0.95, temperature=0.2 and n_samples=50.</li> |
|
<li> HumanEval-Python, reports the pass@1 on HumanEval, the rest is from MultiPL-E benchmark.</li> |
|
<li> Average score is the average pass@1 over all languages. For Win Rate, we compute model rank for each language as <code style="white-space: nowrap; display: inline;">num_models - (rank -1)</code> and average their rankings.</li> |
|
<li> #Languages column represents the number of programming languages included during the pretraining. |
|
</ul>""" |
|
) |
|
demo.launch() |
|
|