atifsial123 commited on
Commit
77603ce
·
verified ·
1 Parent(s): b9b4dd3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -17
app.py CHANGED
@@ -1,16 +1,4 @@
1
  import os
2
- import subprocess
3
-
4
- # Function to install a package if it is not already installed
5
- def install(package):
6
- subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
7
-
8
- # Ensure the necessary packages are installed
9
- install("transformers")
10
- install("torch")
11
- install("pandas")
12
- install("gradio")
13
-
14
  import pandas as pd
15
  import gradio as gr
16
  from transformers import AutoModel, AutoTokenizer
@@ -43,25 +31,34 @@ def process_with_model(pec_number):
43
  return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
44
 
45
  # Combine both functions to create a prediction
46
- def predict(pec_number):
47
  try:
48
- df = load_dataset()
 
 
 
 
 
49
  name = get_name(pec_number, df)
50
  model_output = process_with_model(pec_number)
51
  return f"Name: {name}\nModel Output: {model_output}"
52
  except FileNotFoundError as e:
53
  return str(e)
54
 
55
- # Build the Gradio interface
56
  iface = gr.Interface(
57
  fn=predict,
58
- inputs=gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
 
 
 
59
  outputs="text",
60
  title="PEC Number Lookup with Model Integration",
61
- description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model."
62
  )
63
 
64
  # Run the Gradio interface
65
  if __name__ == "__main__":
66
  iface.launch()
67
 
 
 
1
  import os
 
 
 
 
 
 
 
 
 
 
 
 
2
  import pandas as pd
3
  import gradio as gr
4
  from transformers import AutoModel, AutoTokenizer
 
31
  return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
32
 
33
  # Combine both functions to create a prediction
34
+ def predict(pec_number, file):
35
  try:
36
+ # Load the dataset from the uploaded file if provided
37
+ if file is not None:
38
+ df = pd.read_excel(file.name)
39
+ else:
40
+ df = load_dataset()
41
+
42
  name = get_name(pec_number, df)
43
  model_output = process_with_model(pec_number)
44
  return f"Name: {name}\nModel Output: {model_output}"
45
  except FileNotFoundError as e:
46
  return str(e)
47
 
48
+ # Build the Gradio interface with file upload option
49
  iface = gr.Interface(
50
  fn=predict,
51
+ inputs=[
52
+ gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
53
+ gr.File(label="Upload PEC Numbers and Names file (optional)")
54
+ ],
55
  outputs="text",
56
  title="PEC Number Lookup with Model Integration",
57
+ description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model. Optionally, upload the Excel file if not found."
58
  )
59
 
60
  # Run the Gradio interface
61
  if __name__ == "__main__":
62
  iface.launch()
63
 
64
+