atifsial123 commited on
Commit
71db3e6
1 Parent(s): a21cc8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -61,8 +61,8 @@ def train_model(df):
61
  train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
62
 
63
  # Load your pre-trained model and tokenizer from Hugging Face
64
- tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
65
- model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
66
 
67
  # Add your training code here
68
  # This may involve tokenizing the data and feeding it into the model
@@ -71,8 +71,8 @@ def train_model(df):
71
  # Define the Gradio interface function
72
  def predict(input_text):
73
  # Load the model and tokenizer
74
- tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
75
- model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
76
 
77
  # Tokenize input and make predictions
78
  inputs = tokenizer(input_text, return_tensors="pt")
@@ -108,6 +108,3 @@ if __name__ == "__main__":
108
  else:
109
  print("Failed to build the Gradio interface. Please check the dataset and model.")
110
 
111
-
112
-
113
-
 
61
  train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
62
 
63
  # Load your pre-trained model and tokenizer from Hugging Face
64
+ tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
65
+ model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
66
 
67
  # Add your training code here
68
  # This may involve tokenizing the data and feeding it into the model
 
71
  # Define the Gradio interface function
72
  def predict(input_text):
73
  # Load the model and tokenizer
74
+ tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
75
+ model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
76
 
77
  # Tokenize input and make predictions
78
  inputs = tokenizer(input_text, return_tensors="pt")
 
108
  else:
109
  print("Failed to build the Gradio interface. Please check the dataset and model.")
110