Spaces:
Sleeping
Sleeping
athulnambiar
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import re
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
|
8 |
+
def extract_text_from_file(file):
|
9 |
+
if file.type == "application/pdf":
|
10 |
+
return extract_text_from_pdf(file)
|
11 |
+
else:
|
12 |
+
return file.read().decode('utf-8')
|
13 |
+
|
14 |
+
def extract_text_from_pdf(file):
|
15 |
+
reader = PdfReader(file)
|
16 |
+
text = ""
|
17 |
+
for page in reader.pages:
|
18 |
+
text += page.extract_text()
|
19 |
+
return text
|
20 |
+
|
21 |
+
def clean_text(text):
|
22 |
+
text = re.sub(r'\W', ' ', text)
|
23 |
+
return text.lower()
|
24 |
+
|
25 |
+
def calculate_cosine_similarity(resumes, keywords):
|
26 |
+
tfidf_vectorizer = TfidfVectorizer()
|
27 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(resumes + [keywords])
|
28 |
+
cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1])
|
29 |
+
return cosine_sim.flatten()
|
30 |
+
|
31 |
+
st.title("Resume Analyzer")
|
32 |
+
|
33 |
+
st.sidebar.subheader("Enter Keywords and Priority")
|
34 |
+
|
35 |
+
data = pd.DataFrame({
|
36 |
+
'Keyword': ['']*10,
|
37 |
+
'Priority': ['']*10
|
38 |
+
})
|
39 |
+
|
40 |
+
keywords_df = st.sidebar.data_editor(data, num_rows="dynamic", key="keyword_table")
|
41 |
+
|
42 |
+
if not keywords_df['Keyword'].isnull().all():
|
43 |
+
keywords_combined = " ".join(keywords_df.apply(lambda row: f"{row['Keyword']} " * int(row['Priority']) if row['Priority'].isdigit() else row['Keyword'], axis=1))
|
44 |
+
|
45 |
+
st.subheader("Upload up to 5 resumes (PDF or Text files)")
|
46 |
+
uploaded_files = st.file_uploader("Choose Resume Files", accept_multiple_files=True, type=["txt", "pdf"])
|
47 |
+
|
48 |
+
if len(uploaded_files) > 0 and keywords_combined:
|
49 |
+
with st.spinner("Analyzing Resumes..."):
|
50 |
+
resumes = []
|
51 |
+
for file in uploaded_files:
|
52 |
+
try:
|
53 |
+
|
54 |
+
resume_text = extract_text_from_file(file)
|
55 |
+
clean_resume = clean_text(resume_text)
|
56 |
+
resumes.append(clean_resume)
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error processing {file.name}: {str(e)}")
|
59 |
+
|
60 |
+
clean_keywords = clean_text(keywords_combined)
|
61 |
+
|
62 |
+
scores = calculate_cosine_similarity(resumes, clean_keywords)
|
63 |
+
|
64 |
+
st.subheader("Resume Analysis Results")
|
65 |
+
results_df = pd.DataFrame({
|
66 |
+
'Resume': [file.name for file in uploaded_files],
|
67 |
+
'Similarity Score': scores
|
68 |
+
})
|
69 |
+
st.dataframe(results_df)
|
70 |
+
else:
|
71 |
+
st.info("Please upload resumes and enter keywords with priority.")
|