# Copyright (c) Facebook, Inc. and its affiliates. import logging from datetime import timedelta import torch import torch.distributed as dist import torch.multiprocessing as mp from annotator.oneformer.detectron2.utils import comm __all__ = ["DEFAULT_TIMEOUT", "launch"] DEFAULT_TIMEOUT = timedelta(minutes=30) def _find_free_port(): import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Binding to port 0 will cause the OS to find an available port for us sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() # NOTE: there is still a chance the port could be taken by other processes. return port def launch( main_func, # Should be num_processes_per_machine, but kept for compatibility. num_gpus_per_machine, num_machines=1, machine_rank=0, dist_url=None, args=(), timeout=DEFAULT_TIMEOUT, ): """ Launch multi-process or distributed training. This function must be called on all machines involved in the training. It will spawn child processes (defined by ``num_gpus_per_machine``) on each machine. Args: main_func: a function that will be called by `main_func(*args)` num_gpus_per_machine (int): number of processes per machine. When using GPUs, this should be the number of GPUs. num_machines (int): the total number of machines machine_rank (int): the rank of this machine dist_url (str): url to connect to for distributed jobs, including protocol e.g. "tcp://127.0.0.1:8686". Can be set to "auto" to automatically select a free port on localhost timeout (timedelta): timeout of the distributed workers args (tuple): arguments passed to main_func """ world_size = num_machines * num_gpus_per_machine if world_size > 1: # https://github.com/pytorch/pytorch/pull/14391 # TODO prctl in spawned processes if dist_url == "auto": assert num_machines == 1, "dist_url=auto not supported in multi-machine jobs." port = _find_free_port() dist_url = f"tcp://127.0.0.1:{port}" if num_machines > 1 and dist_url.startswith("file://"): logger = logging.getLogger(__name__) logger.warning( "file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://" ) mp.start_processes( _distributed_worker, nprocs=num_gpus_per_machine, args=( main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout, ), daemon=False, ) else: main_func(*args) def _distributed_worker( local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout=DEFAULT_TIMEOUT, ): has_gpu = torch.cuda.is_available() if has_gpu: assert num_gpus_per_machine <= torch.cuda.device_count() global_rank = machine_rank * num_gpus_per_machine + local_rank try: dist.init_process_group( backend="NCCL" if has_gpu else "GLOO", init_method=dist_url, world_size=world_size, rank=global_rank, timeout=timeout, ) except Exception as e: logger = logging.getLogger(__name__) logger.error("Process group URL: {}".format(dist_url)) raise e # Setup the local process group. comm.create_local_process_group(num_gpus_per_machine) if has_gpu: torch.cuda.set_device(local_rank) # synchronize is needed here to prevent a possible timeout after calling init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() main_func(*args)