"""This package contains modules related to objective functions, optimizations, and network architectures. To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. You need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- : unpack data from dataset and apply preprocessing. -- : produce intermediate results. -- : calculate loss, gradients, and update network weights. -- : (optionally) add model-specific options and set default options. In the function <__init__>, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. Now you can use the model class by specifying flag '--model dummy'. See our template model class 'template_model.py' for more details. """ import importlib from .base_model import BaseModel def find_model_using_name(model_name): """Import the module "models/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = "annotator.leres.pix2pix.models." + model_name + "_model" modellib = importlib.import_module(model_filename) model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model def get_option_setter(model_name): """Return the static method of the model class.""" model_class = find_model_using_name(model_name) return model_class.modify_commandline_options def create_model(opt): """Create a model given the option. This function warps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from models import create_model >>> model = create_model(opt) """ model = find_model_using_name(opt.model) instance = model(opt) print("model [%s] was created" % type(instance).__name__) return instance