|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from torch.utils.data import DataLoader, Dataset |
|
from torchvision import transforms |
|
|
|
|
|
class ToTensor(object): |
|
def __init__(self, resize_shape): |
|
|
|
|
|
self.normalize = lambda x : x |
|
self.resize = transforms.Resize(resize_shape) |
|
|
|
def __call__(self, sample): |
|
image, depth = sample['image'], sample['depth'] |
|
image = self.to_tensor(image) |
|
image = self.normalize(image) |
|
depth = self.to_tensor(depth) |
|
|
|
image = self.resize(image) |
|
|
|
return {'image': image, 'depth': depth, 'dataset': "ddad"} |
|
|
|
def to_tensor(self, pic): |
|
|
|
if isinstance(pic, np.ndarray): |
|
img = torch.from_numpy(pic.transpose((2, 0, 1))) |
|
return img |
|
|
|
|
|
if pic.mode == 'I': |
|
img = torch.from_numpy(np.array(pic, np.int32, copy=False)) |
|
elif pic.mode == 'I;16': |
|
img = torch.from_numpy(np.array(pic, np.int16, copy=False)) |
|
else: |
|
img = torch.ByteTensor( |
|
torch.ByteStorage.from_buffer(pic.tobytes())) |
|
|
|
if pic.mode == 'YCbCr': |
|
nchannel = 3 |
|
elif pic.mode == 'I;16': |
|
nchannel = 1 |
|
else: |
|
nchannel = len(pic.mode) |
|
img = img.view(pic.size[1], pic.size[0], nchannel) |
|
|
|
img = img.transpose(0, 1).transpose(0, 2).contiguous() |
|
|
|
if isinstance(img, torch.ByteTensor): |
|
return img.float() |
|
else: |
|
return img |
|
|
|
|
|
class DDAD(Dataset): |
|
def __init__(self, data_dir_root, resize_shape): |
|
import glob |
|
|
|
|
|
self.image_files = glob.glob(os.path.join(data_dir_root, '*.png')) |
|
self.depth_files = [r.replace("_rgb.png", "_depth.npy") |
|
for r in self.image_files] |
|
self.transform = ToTensor(resize_shape) |
|
|
|
def __getitem__(self, idx): |
|
|
|
image_path = self.image_files[idx] |
|
depth_path = self.depth_files[idx] |
|
|
|
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0 |
|
depth = np.load(depth_path) |
|
|
|
|
|
depth = depth[..., None] |
|
|
|
sample = dict(image=image, depth=depth) |
|
sample = self.transform(sample) |
|
|
|
if idx == 0: |
|
print(sample["image"].shape) |
|
|
|
return sample |
|
|
|
def __len__(self): |
|
return len(self.image_files) |
|
|
|
|
|
def get_ddad_loader(data_dir_root, resize_shape, batch_size=1, **kwargs): |
|
dataset = DDAD(data_dir_root, resize_shape) |
|
return DataLoader(dataset, batch_size, **kwargs) |
|
|