|
import os.path as osp |
|
|
|
import annotator.uniformer.mmcv as mmcv |
|
import numpy as np |
|
|
|
from ..builder import PIPELINES |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadImageFromFile(object): |
|
"""Load an image from file. |
|
|
|
Required keys are "img_prefix" and "img_info" (a dict that must contain the |
|
key "filename"). Added or updated keys are "filename", "img", "img_shape", |
|
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), |
|
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). |
|
|
|
Args: |
|
to_float32 (bool): Whether to convert the loaded image to a float32 |
|
numpy array. If set to False, the loaded image is an uint8 array. |
|
Defaults to False. |
|
color_type (str): The flag argument for :func:`mmcv.imfrombytes`. |
|
Defaults to 'color'. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: |
|
'cv2' |
|
""" |
|
|
|
def __init__(self, |
|
to_float32=False, |
|
color_type='color', |
|
file_client_args=dict(backend='disk'), |
|
imdecode_backend='cv2'): |
|
self.to_float32 = to_float32 |
|
self.color_type = color_type |
|
self.file_client_args = file_client_args.copy() |
|
self.file_client = None |
|
self.imdecode_backend = imdecode_backend |
|
|
|
def __call__(self, results): |
|
"""Call functions to load image and get image meta information. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmseg.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded image and meta information. |
|
""" |
|
|
|
if self.file_client is None: |
|
self.file_client = mmcv.FileClient(**self.file_client_args) |
|
|
|
if results.get('img_prefix') is not None: |
|
filename = osp.join(results['img_prefix'], |
|
results['img_info']['filename']) |
|
else: |
|
filename = results['img_info']['filename'] |
|
img_bytes = self.file_client.get(filename) |
|
img = mmcv.imfrombytes( |
|
img_bytes, flag=self.color_type, backend=self.imdecode_backend) |
|
if self.to_float32: |
|
img = img.astype(np.float32) |
|
|
|
results['filename'] = filename |
|
results['ori_filename'] = results['img_info']['filename'] |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
results['ori_shape'] = img.shape |
|
|
|
results['pad_shape'] = img.shape |
|
results['scale_factor'] = 1.0 |
|
num_channels = 1 if len(img.shape) < 3 else img.shape[2] |
|
results['img_norm_cfg'] = dict( |
|
mean=np.zeros(num_channels, dtype=np.float32), |
|
std=np.ones(num_channels, dtype=np.float32), |
|
to_rgb=False) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(to_float32={self.to_float32},' |
|
repr_str += f"color_type='{self.color_type}'," |
|
repr_str += f"imdecode_backend='{self.imdecode_backend}')" |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadAnnotations(object): |
|
"""Load annotations for semantic segmentation. |
|
|
|
Args: |
|
reduce_zero_label (bool): Whether reduce all label value by 1. |
|
Usually used for datasets where 0 is background label. |
|
Default: False. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: |
|
'pillow' |
|
""" |
|
|
|
def __init__(self, |
|
reduce_zero_label=False, |
|
file_client_args=dict(backend='disk'), |
|
imdecode_backend='pillow'): |
|
self.reduce_zero_label = reduce_zero_label |
|
self.file_client_args = file_client_args.copy() |
|
self.file_client = None |
|
self.imdecode_backend = imdecode_backend |
|
|
|
def __call__(self, results): |
|
"""Call function to load multiple types annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmseg.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded semantic segmentation annotations. |
|
""" |
|
|
|
if self.file_client is None: |
|
self.file_client = mmcv.FileClient(**self.file_client_args) |
|
|
|
if results.get('seg_prefix', None) is not None: |
|
filename = osp.join(results['seg_prefix'], |
|
results['ann_info']['seg_map']) |
|
else: |
|
filename = results['ann_info']['seg_map'] |
|
img_bytes = self.file_client.get(filename) |
|
gt_semantic_seg = mmcv.imfrombytes( |
|
img_bytes, flag='unchanged', |
|
backend=self.imdecode_backend).squeeze().astype(np.uint8) |
|
|
|
if results.get('label_map', None) is not None: |
|
for old_id, new_id in results['label_map'].items(): |
|
gt_semantic_seg[gt_semantic_seg == old_id] = new_id |
|
|
|
if self.reduce_zero_label: |
|
|
|
gt_semantic_seg[gt_semantic_seg == 0] = 255 |
|
gt_semantic_seg = gt_semantic_seg - 1 |
|
gt_semantic_seg[gt_semantic_seg == 254] = 255 |
|
results['gt_semantic_seg'] = gt_semantic_seg |
|
results['seg_fields'].append('gt_semantic_seg') |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(reduce_zero_label={self.reduce_zero_label},' |
|
repr_str += f"imdecode_backend='{self.imdecode_backend}')" |
|
return repr_str |
|
|