|
|
|
from collections.abc import Mapping, Sequence |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.data.dataloader import default_collate |
|
|
|
from .data_container import DataContainer |
|
|
|
|
|
def collate(batch, samples_per_gpu=1): |
|
"""Puts each data field into a tensor/DataContainer with outer dimension |
|
batch size. |
|
|
|
Extend default_collate to add support for |
|
:type:`~mmcv.parallel.DataContainer`. There are 3 cases. |
|
|
|
1. cpu_only = True, e.g., meta data |
|
2. cpu_only = False, stack = True, e.g., images tensors |
|
3. cpu_only = False, stack = False, e.g., gt bboxes |
|
""" |
|
|
|
if not isinstance(batch, Sequence): |
|
raise TypeError(f'{batch.dtype} is not supported.') |
|
|
|
if isinstance(batch[0], DataContainer): |
|
stacked = [] |
|
if batch[0].cpu_only: |
|
for i in range(0, len(batch), samples_per_gpu): |
|
stacked.append( |
|
[sample.data for sample in batch[i:i + samples_per_gpu]]) |
|
return DataContainer( |
|
stacked, batch[0].stack, batch[0].padding_value, cpu_only=True) |
|
elif batch[0].stack: |
|
for i in range(0, len(batch), samples_per_gpu): |
|
assert isinstance(batch[i].data, torch.Tensor) |
|
|
|
if batch[i].pad_dims is not None: |
|
ndim = batch[i].dim() |
|
assert ndim > batch[i].pad_dims |
|
max_shape = [0 for _ in range(batch[i].pad_dims)] |
|
for dim in range(1, batch[i].pad_dims + 1): |
|
max_shape[dim - 1] = batch[i].size(-dim) |
|
for sample in batch[i:i + samples_per_gpu]: |
|
for dim in range(0, ndim - batch[i].pad_dims): |
|
assert batch[i].size(dim) == sample.size(dim) |
|
for dim in range(1, batch[i].pad_dims + 1): |
|
max_shape[dim - 1] = max(max_shape[dim - 1], |
|
sample.size(-dim)) |
|
padded_samples = [] |
|
for sample in batch[i:i + samples_per_gpu]: |
|
pad = [0 for _ in range(batch[i].pad_dims * 2)] |
|
for dim in range(1, batch[i].pad_dims + 1): |
|
pad[2 * dim - |
|
1] = max_shape[dim - 1] - sample.size(-dim) |
|
padded_samples.append( |
|
F.pad( |
|
sample.data, pad, value=sample.padding_value)) |
|
stacked.append(default_collate(padded_samples)) |
|
elif batch[i].pad_dims is None: |
|
stacked.append( |
|
default_collate([ |
|
sample.data |
|
for sample in batch[i:i + samples_per_gpu] |
|
])) |
|
else: |
|
raise ValueError( |
|
'pad_dims should be either None or integers (1-3)') |
|
|
|
else: |
|
for i in range(0, len(batch), samples_per_gpu): |
|
stacked.append( |
|
[sample.data for sample in batch[i:i + samples_per_gpu]]) |
|
return DataContainer(stacked, batch[0].stack, batch[0].padding_value) |
|
elif isinstance(batch[0], Sequence): |
|
transposed = zip(*batch) |
|
return [collate(samples, samples_per_gpu) for samples in transposed] |
|
elif isinstance(batch[0], Mapping): |
|
return { |
|
key: collate([d[key] for d in batch], samples_per_gpu) |
|
for key in batch[0] |
|
} |
|
else: |
|
return default_collate(batch) |
|
|