|
__author__ = 'tsungyi' |
|
|
|
import numpy as np |
|
import datetime |
|
import time |
|
from collections import defaultdict |
|
from . import mask as maskUtils |
|
import copy |
|
|
|
class COCOeval: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'): |
|
''' |
|
Initialize CocoEval using coco APIs for gt and dt |
|
:param cocoGt: coco object with ground truth annotations |
|
:param cocoDt: coco object with detection results |
|
:return: None |
|
''' |
|
if not iouType: |
|
print('iouType not specified. use default iouType segm') |
|
self.cocoGt = cocoGt |
|
self.cocoDt = cocoDt |
|
self.evalImgs = defaultdict(list) |
|
self.eval = {} |
|
self._gts = defaultdict(list) |
|
self._dts = defaultdict(list) |
|
self.params = Params(iouType=iouType) |
|
self._paramsEval = {} |
|
self.stats = [] |
|
self.ious = {} |
|
if not cocoGt is None: |
|
self.params.imgIds = sorted(cocoGt.getImgIds()) |
|
self.params.catIds = sorted(cocoGt.getCatIds()) |
|
|
|
|
|
def _prepare(self): |
|
''' |
|
Prepare ._gts and ._dts for evaluation based on params |
|
:return: None |
|
''' |
|
def _toMask(anns, coco): |
|
|
|
for ann in anns: |
|
rle = coco.annToRLE(ann) |
|
ann['segmentation'] = rle |
|
p = self.params |
|
if p.useCats: |
|
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) |
|
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) |
|
else: |
|
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) |
|
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) |
|
|
|
|
|
if p.iouType == 'segm': |
|
_toMask(gts, self.cocoGt) |
|
_toMask(dts, self.cocoDt) |
|
|
|
for gt in gts: |
|
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0 |
|
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd'] |
|
if p.iouType == 'keypoints': |
|
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore'] |
|
self._gts = defaultdict(list) |
|
self._dts = defaultdict(list) |
|
for gt in gts: |
|
self._gts[gt['image_id'], gt['category_id']].append(gt) |
|
for dt in dts: |
|
self._dts[dt['image_id'], dt['category_id']].append(dt) |
|
self.evalImgs = defaultdict(list) |
|
self.eval = {} |
|
|
|
def evaluate(self): |
|
''' |
|
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs |
|
:return: None |
|
''' |
|
tic = time.time() |
|
print('Running per image evaluation...') |
|
p = self.params |
|
|
|
if not p.useSegm is None: |
|
p.iouType = 'segm' if p.useSegm == 1 else 'bbox' |
|
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) |
|
print('Evaluate annotation type *{}*'.format(p.iouType)) |
|
p.imgIds = list(np.unique(p.imgIds)) |
|
if p.useCats: |
|
p.catIds = list(np.unique(p.catIds)) |
|
p.maxDets = sorted(p.maxDets) |
|
self.params=p |
|
|
|
self._prepare() |
|
|
|
catIds = p.catIds if p.useCats else [-1] |
|
|
|
if p.iouType == 'segm' or p.iouType == 'bbox': |
|
computeIoU = self.computeIoU |
|
elif p.iouType == 'keypoints': |
|
computeIoU = self.computeOks |
|
self.ious = {(imgId, catId): computeIoU(imgId, catId) \ |
|
for imgId in p.imgIds |
|
for catId in catIds} |
|
|
|
evaluateImg = self.evaluateImg |
|
maxDet = p.maxDets[-1] |
|
self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) |
|
for catId in catIds |
|
for areaRng in p.areaRng |
|
for imgId in p.imgIds |
|
] |
|
self._paramsEval = copy.deepcopy(self.params) |
|
toc = time.time() |
|
print('DONE (t={:0.2f}s).'.format(toc-tic)) |
|
|
|
def computeIoU(self, imgId, catId): |
|
p = self.params |
|
if p.useCats: |
|
gt = self._gts[imgId,catId] |
|
dt = self._dts[imgId,catId] |
|
else: |
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] |
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] |
|
if len(gt) == 0 and len(dt) ==0: |
|
return [] |
|
inds = np.argsort([-d['score'] for d in dt], kind='mergesort') |
|
dt = [dt[i] for i in inds] |
|
if len(dt) > p.maxDets[-1]: |
|
dt=dt[0:p.maxDets[-1]] |
|
|
|
if p.iouType == 'segm': |
|
g = [g['segmentation'] for g in gt] |
|
d = [d['segmentation'] for d in dt] |
|
elif p.iouType == 'bbox': |
|
g = [g['bbox'] for g in gt] |
|
d = [d['bbox'] for d in dt] |
|
else: |
|
raise Exception('unknown iouType for iou computation') |
|
|
|
|
|
iscrowd = [int(o['iscrowd']) for o in gt] |
|
ious = maskUtils.iou(d,g,iscrowd) |
|
return ious |
|
|
|
def computeOks(self, imgId, catId): |
|
p = self.params |
|
|
|
gts = self._gts[imgId, catId] |
|
dts = self._dts[imgId, catId] |
|
inds = np.argsort([-d['score'] for d in dts], kind='mergesort') |
|
dts = [dts[i] for i in inds] |
|
if len(dts) > p.maxDets[-1]: |
|
dts = dts[0:p.maxDets[-1]] |
|
|
|
if len(gts) == 0 or len(dts) == 0: |
|
return [] |
|
ious = np.zeros((len(dts), len(gts))) |
|
sigmas = p.kpt_oks_sigmas |
|
vars = (sigmas * 2)**2 |
|
k = len(sigmas) |
|
|
|
for j, gt in enumerate(gts): |
|
|
|
g = np.array(gt['keypoints']) |
|
xg = g[0::3]; yg = g[1::3]; vg = g[2::3] |
|
k1 = np.count_nonzero(vg > 0) |
|
bb = gt['bbox'] |
|
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 |
|
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 |
|
for i, dt in enumerate(dts): |
|
d = np.array(dt['keypoints']) |
|
xd = d[0::3]; yd = d[1::3] |
|
if k1>0: |
|
|
|
dx = xd - xg |
|
dy = yd - yg |
|
else: |
|
|
|
z = np.zeros((k)) |
|
dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0) |
|
dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0) |
|
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2 |
|
if k1 > 0: |
|
e=e[vg > 0] |
|
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] |
|
return ious |
|
|
|
def evaluateImg(self, imgId, catId, aRng, maxDet): |
|
''' |
|
perform evaluation for single category and image |
|
:return: dict (single image results) |
|
''' |
|
p = self.params |
|
if p.useCats: |
|
gt = self._gts[imgId,catId] |
|
dt = self._dts[imgId,catId] |
|
else: |
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] |
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] |
|
if len(gt) == 0 and len(dt) ==0: |
|
return None |
|
|
|
for g in gt: |
|
if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]): |
|
g['_ignore'] = 1 |
|
else: |
|
g['_ignore'] = 0 |
|
|
|
|
|
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') |
|
gt = [gt[i] for i in gtind] |
|
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') |
|
dt = [dt[i] for i in dtind[0:maxDet]] |
|
iscrowd = [int(o['iscrowd']) for o in gt] |
|
|
|
ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] |
|
|
|
T = len(p.iouThrs) |
|
G = len(gt) |
|
D = len(dt) |
|
gtm = np.zeros((T,G)) |
|
dtm = np.zeros((T,D)) |
|
gtIg = np.array([g['_ignore'] for g in gt]) |
|
dtIg = np.zeros((T,D)) |
|
if not len(ious)==0: |
|
for tind, t in enumerate(p.iouThrs): |
|
for dind, d in enumerate(dt): |
|
|
|
iou = min([t,1-1e-10]) |
|
m = -1 |
|
for gind, g in enumerate(gt): |
|
|
|
if gtm[tind,gind]>0 and not iscrowd[gind]: |
|
continue |
|
|
|
if m>-1 and gtIg[m]==0 and gtIg[gind]==1: |
|
break |
|
|
|
if ious[dind,gind] < iou: |
|
continue |
|
|
|
iou=ious[dind,gind] |
|
m=gind |
|
|
|
if m ==-1: |
|
continue |
|
dtIg[tind,dind] = gtIg[m] |
|
dtm[tind,dind] = gt[m]['id'] |
|
gtm[tind,m] = d['id'] |
|
|
|
a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt))) |
|
dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0))) |
|
|
|
return { |
|
'image_id': imgId, |
|
'category_id': catId, |
|
'aRng': aRng, |
|
'maxDet': maxDet, |
|
'dtIds': [d['id'] for d in dt], |
|
'gtIds': [g['id'] for g in gt], |
|
'dtMatches': dtm, |
|
'gtMatches': gtm, |
|
'dtScores': [d['score'] for d in dt], |
|
'gtIgnore': gtIg, |
|
'dtIgnore': dtIg, |
|
} |
|
|
|
def accumulate(self, p = None): |
|
''' |
|
Accumulate per image evaluation results and store the result in self.eval |
|
:param p: input params for evaluation |
|
:return: None |
|
''' |
|
print('Accumulating evaluation results...') |
|
tic = time.time() |
|
if not self.evalImgs: |
|
print('Please run evaluate() first') |
|
|
|
if p is None: |
|
p = self.params |
|
p.catIds = p.catIds if p.useCats == 1 else [-1] |
|
T = len(p.iouThrs) |
|
R = len(p.recThrs) |
|
K = len(p.catIds) if p.useCats else 1 |
|
A = len(p.areaRng) |
|
M = len(p.maxDets) |
|
precision = -np.ones((T,R,K,A,M)) |
|
recall = -np.ones((T,K,A,M)) |
|
scores = -np.ones((T,R,K,A,M)) |
|
|
|
|
|
_pe = self._paramsEval |
|
catIds = _pe.catIds if _pe.useCats else [-1] |
|
setK = set(catIds) |
|
setA = set(map(tuple, _pe.areaRng)) |
|
setM = set(_pe.maxDets) |
|
setI = set(_pe.imgIds) |
|
|
|
k_list = [n for n, k in enumerate(p.catIds) if k in setK] |
|
m_list = [m for n, m in enumerate(p.maxDets) if m in setM] |
|
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] |
|
i_list = [n for n, i in enumerate(p.imgIds) if i in setI] |
|
I0 = len(_pe.imgIds) |
|
A0 = len(_pe.areaRng) |
|
|
|
for k, k0 in enumerate(k_list): |
|
Nk = k0*A0*I0 |
|
for a, a0 in enumerate(a_list): |
|
Na = a0*I0 |
|
for m, maxDet in enumerate(m_list): |
|
E = [self.evalImgs[Nk + Na + i] for i in i_list] |
|
E = [e for e in E if not e is None] |
|
if len(E) == 0: |
|
continue |
|
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E]) |
|
|
|
|
|
|
|
inds = np.argsort(-dtScores, kind='mergesort') |
|
dtScoresSorted = dtScores[inds] |
|
|
|
dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds] |
|
dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds] |
|
gtIg = np.concatenate([e['gtIgnore'] for e in E]) |
|
npig = np.count_nonzero(gtIg==0 ) |
|
if npig == 0: |
|
continue |
|
tps = np.logical_and( dtm, np.logical_not(dtIg) ) |
|
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) ) |
|
|
|
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float) |
|
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float) |
|
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): |
|
tp = np.array(tp) |
|
fp = np.array(fp) |
|
nd = len(tp) |
|
rc = tp / npig |
|
pr = tp / (fp+tp+np.spacing(1)) |
|
q = np.zeros((R,)) |
|
ss = np.zeros((R,)) |
|
|
|
if nd: |
|
recall[t,k,a,m] = rc[-1] |
|
else: |
|
recall[t,k,a,m] = 0 |
|
|
|
|
|
|
|
pr = pr.tolist(); q = q.tolist() |
|
|
|
for i in range(nd-1, 0, -1): |
|
if pr[i] > pr[i-1]: |
|
pr[i-1] = pr[i] |
|
|
|
inds = np.searchsorted(rc, p.recThrs, side='left') |
|
try: |
|
for ri, pi in enumerate(inds): |
|
q[ri] = pr[pi] |
|
ss[ri] = dtScoresSorted[pi] |
|
except: |
|
pass |
|
precision[t,:,k,a,m] = np.array(q) |
|
scores[t,:,k,a,m] = np.array(ss) |
|
self.eval = { |
|
'params': p, |
|
'counts': [T, R, K, A, M], |
|
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), |
|
'precision': precision, |
|
'recall': recall, |
|
'scores': scores, |
|
} |
|
toc = time.time() |
|
print('DONE (t={:0.2f}s).'.format( toc-tic)) |
|
|
|
def summarize(self): |
|
''' |
|
Compute and display summary metrics for evaluation results. |
|
Note this functin can *only* be applied on the default parameter setting |
|
''' |
|
def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ): |
|
p = self.params |
|
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' |
|
titleStr = 'Average Precision' if ap == 1 else 'Average Recall' |
|
typeStr = '(AP)' if ap==1 else '(AR)' |
|
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ |
|
if iouThr is None else '{:0.2f}'.format(iouThr) |
|
|
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] |
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] |
|
if ap == 1: |
|
|
|
s = self.eval['precision'] |
|
|
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:,:,:,aind,mind] |
|
else: |
|
|
|
s = self.eval['recall'] |
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:,:,aind,mind] |
|
if len(s[s>-1])==0: |
|
mean_s = -1 |
|
else: |
|
mean_s = np.mean(s[s>-1]) |
|
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) |
|
return mean_s |
|
def _summarizeDets(): |
|
stats = np.zeros((12,)) |
|
stats[0] = _summarize(1) |
|
stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) |
|
stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) |
|
stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) |
|
stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) |
|
stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) |
|
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) |
|
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) |
|
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) |
|
stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) |
|
stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) |
|
stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2]) |
|
return stats |
|
def _summarizeKps(): |
|
stats = np.zeros((10,)) |
|
stats[0] = _summarize(1, maxDets=20) |
|
stats[1] = _summarize(1, maxDets=20, iouThr=.5) |
|
stats[2] = _summarize(1, maxDets=20, iouThr=.75) |
|
stats[3] = _summarize(1, maxDets=20, areaRng='medium') |
|
stats[4] = _summarize(1, maxDets=20, areaRng='large') |
|
stats[5] = _summarize(0, maxDets=20) |
|
stats[6] = _summarize(0, maxDets=20, iouThr=.5) |
|
stats[7] = _summarize(0, maxDets=20, iouThr=.75) |
|
stats[8] = _summarize(0, maxDets=20, areaRng='medium') |
|
stats[9] = _summarize(0, maxDets=20, areaRng='large') |
|
return stats |
|
if not self.eval: |
|
raise Exception('Please run accumulate() first') |
|
iouType = self.params.iouType |
|
if iouType == 'segm' or iouType == 'bbox': |
|
summarize = _summarizeDets |
|
elif iouType == 'keypoints': |
|
summarize = _summarizeKps |
|
self.stats = summarize() |
|
|
|
def __str__(self): |
|
self.summarize() |
|
|
|
class Params: |
|
''' |
|
Params for coco evaluation api |
|
''' |
|
def setDetParams(self): |
|
self.imgIds = [] |
|
self.catIds = [] |
|
|
|
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) |
|
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) |
|
self.maxDets = [1, 10, 100] |
|
self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] |
|
self.areaRngLbl = ['all', 'small', 'medium', 'large'] |
|
self.useCats = 1 |
|
|
|
def setKpParams(self): |
|
self.imgIds = [] |
|
self.catIds = [] |
|
|
|
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) |
|
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) |
|
self.maxDets = [20] |
|
self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] |
|
self.areaRngLbl = ['all', 'medium', 'large'] |
|
self.useCats = 1 |
|
self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0 |
|
|
|
def __init__(self, iouType='segm'): |
|
if iouType == 'segm' or iouType == 'bbox': |
|
self.setDetParams() |
|
elif iouType == 'keypoints': |
|
self.setKpParams() |
|
else: |
|
raise Exception('iouType not supported') |
|
self.iouType = iouType |
|
|
|
self.useSegm = None |
|
|