|
|
|
import numbers |
|
from abc import ABCMeta, abstractmethod |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..hook import Hook |
|
|
|
|
|
class LoggerHook(Hook): |
|
"""Base class for logger hooks. |
|
|
|
Args: |
|
interval (int): Logging interval (every k iterations). |
|
ignore_last (bool): Ignore the log of last iterations in each epoch |
|
if less than `interval`. |
|
reset_flag (bool): Whether to clear the output buffer after logging. |
|
by_epoch (bool): Whether EpochBasedRunner is used. |
|
""" |
|
|
|
__metaclass__ = ABCMeta |
|
|
|
def __init__(self, |
|
interval=10, |
|
ignore_last=True, |
|
reset_flag=False, |
|
by_epoch=True): |
|
self.interval = interval |
|
self.ignore_last = ignore_last |
|
self.reset_flag = reset_flag |
|
self.by_epoch = by_epoch |
|
|
|
@abstractmethod |
|
def log(self, runner): |
|
pass |
|
|
|
@staticmethod |
|
def is_scalar(val, include_np=True, include_torch=True): |
|
"""Tell the input variable is a scalar or not. |
|
|
|
Args: |
|
val: Input variable. |
|
include_np (bool): Whether include 0-d np.ndarray as a scalar. |
|
include_torch (bool): Whether include 0-d torch.Tensor as a scalar. |
|
|
|
Returns: |
|
bool: True or False. |
|
""" |
|
if isinstance(val, numbers.Number): |
|
return True |
|
elif include_np and isinstance(val, np.ndarray) and val.ndim == 0: |
|
return True |
|
elif include_torch and isinstance(val, torch.Tensor) and len(val) == 1: |
|
return True |
|
else: |
|
return False |
|
|
|
def get_mode(self, runner): |
|
if runner.mode == 'train': |
|
if 'time' in runner.log_buffer.output: |
|
mode = 'train' |
|
else: |
|
mode = 'val' |
|
elif runner.mode == 'val': |
|
mode = 'val' |
|
else: |
|
raise ValueError(f"runner mode should be 'train' or 'val', " |
|
f'but got {runner.mode}') |
|
return mode |
|
|
|
def get_epoch(self, runner): |
|
if runner.mode == 'train': |
|
epoch = runner.epoch + 1 |
|
elif runner.mode == 'val': |
|
|
|
|
|
epoch = runner.epoch |
|
else: |
|
raise ValueError(f"runner mode should be 'train' or 'val', " |
|
f'but got {runner.mode}') |
|
return epoch |
|
|
|
def get_iter(self, runner, inner_iter=False): |
|
"""Get the current training iteration step.""" |
|
if self.by_epoch and inner_iter: |
|
current_iter = runner.inner_iter + 1 |
|
else: |
|
current_iter = runner.iter + 1 |
|
return current_iter |
|
|
|
def get_lr_tags(self, runner): |
|
tags = {} |
|
lrs = runner.current_lr() |
|
if isinstance(lrs, dict): |
|
for name, value in lrs.items(): |
|
tags[f'learning_rate/{name}'] = value[0] |
|
else: |
|
tags['learning_rate'] = lrs[0] |
|
return tags |
|
|
|
def get_momentum_tags(self, runner): |
|
tags = {} |
|
momentums = runner.current_momentum() |
|
if isinstance(momentums, dict): |
|
for name, value in momentums.items(): |
|
tags[f'momentum/{name}'] = value[0] |
|
else: |
|
tags['momentum'] = momentums[0] |
|
return tags |
|
|
|
def get_loggable_tags(self, |
|
runner, |
|
allow_scalar=True, |
|
allow_text=False, |
|
add_mode=True, |
|
tags_to_skip=('time', 'data_time')): |
|
tags = {} |
|
for var, val in runner.log_buffer.output.items(): |
|
if var in tags_to_skip: |
|
continue |
|
if self.is_scalar(val) and not allow_scalar: |
|
continue |
|
if isinstance(val, str) and not allow_text: |
|
continue |
|
if add_mode: |
|
var = f'{self.get_mode(runner)}/{var}' |
|
tags[var] = val |
|
tags.update(self.get_lr_tags(runner)) |
|
tags.update(self.get_momentum_tags(runner)) |
|
return tags |
|
|
|
def before_run(self, runner): |
|
for hook in runner.hooks[::-1]: |
|
if isinstance(hook, LoggerHook): |
|
hook.reset_flag = True |
|
break |
|
|
|
def before_epoch(self, runner): |
|
runner.log_buffer.clear() |
|
|
|
def after_train_iter(self, runner): |
|
if self.by_epoch and self.every_n_inner_iters(runner, self.interval): |
|
runner.log_buffer.average(self.interval) |
|
elif not self.by_epoch and self.every_n_iters(runner, self.interval): |
|
runner.log_buffer.average(self.interval) |
|
elif self.end_of_epoch(runner) and not self.ignore_last: |
|
|
|
runner.log_buffer.average(self.interval) |
|
|
|
if runner.log_buffer.ready: |
|
self.log(runner) |
|
if self.reset_flag: |
|
runner.log_buffer.clear_output() |
|
|
|
def after_train_epoch(self, runner): |
|
if runner.log_buffer.ready: |
|
self.log(runner) |
|
if self.reset_flag: |
|
runner.log_buffer.clear_output() |
|
|
|
def after_val_epoch(self, runner): |
|
runner.log_buffer.average() |
|
self.log(runner) |
|
if self.reset_flag: |
|
runner.log_buffer.clear_output() |
|
|