|
import torch |
|
from torch.autograd import Function |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext('_ext', [ |
|
'furthest_point_sampling_forward', |
|
'furthest_point_sampling_with_dist_forward' |
|
]) |
|
|
|
|
|
class FurthestPointSampling(Function): |
|
"""Uses iterative furthest point sampling to select a set of features whose |
|
corresponding points have the furthest distance.""" |
|
|
|
@staticmethod |
|
def forward(ctx, points_xyz: torch.Tensor, |
|
num_points: int) -> torch.Tensor: |
|
""" |
|
Args: |
|
points_xyz (Tensor): (B, N, 3) where N > num_points. |
|
num_points (int): Number of points in the sampled set. |
|
|
|
Returns: |
|
Tensor: (B, num_points) indices of the sampled points. |
|
""" |
|
assert points_xyz.is_contiguous() |
|
|
|
B, N = points_xyz.size()[:2] |
|
output = torch.cuda.IntTensor(B, num_points) |
|
temp = torch.cuda.FloatTensor(B, N).fill_(1e10) |
|
|
|
ext_module.furthest_point_sampling_forward( |
|
points_xyz, |
|
temp, |
|
output, |
|
b=B, |
|
n=N, |
|
m=num_points, |
|
) |
|
if torch.__version__ != 'parrots': |
|
ctx.mark_non_differentiable(output) |
|
return output |
|
|
|
@staticmethod |
|
def backward(xyz, a=None): |
|
return None, None |
|
|
|
|
|
class FurthestPointSamplingWithDist(Function): |
|
"""Uses iterative furthest point sampling to select a set of features whose |
|
corresponding points have the furthest distance.""" |
|
|
|
@staticmethod |
|
def forward(ctx, points_dist: torch.Tensor, |
|
num_points: int) -> torch.Tensor: |
|
""" |
|
Args: |
|
points_dist (Tensor): (B, N, N) Distance between each point pair. |
|
num_points (int): Number of points in the sampled set. |
|
|
|
Returns: |
|
Tensor: (B, num_points) indices of the sampled points. |
|
""" |
|
assert points_dist.is_contiguous() |
|
|
|
B, N, _ = points_dist.size() |
|
output = points_dist.new_zeros([B, num_points], dtype=torch.int32) |
|
temp = points_dist.new_zeros([B, N]).fill_(1e10) |
|
|
|
ext_module.furthest_point_sampling_with_dist_forward( |
|
points_dist, temp, output, b=B, n=N, m=num_points) |
|
if torch.__version__ != 'parrots': |
|
ctx.mark_non_differentiable(output) |
|
return output |
|
|
|
@staticmethod |
|
def backward(xyz, a=None): |
|
return None, None |
|
|
|
|
|
furthest_point_sample = FurthestPointSampling.apply |
|
furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply |
|
|