|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext('_ext', ['contour_expand']) |
|
|
|
|
|
def contour_expand(kernel_mask, internal_kernel_label, min_kernel_area, |
|
kernel_num): |
|
"""Expand kernel contours so that foreground pixels are assigned into |
|
instances. |
|
|
|
Arguments: |
|
kernel_mask (np.array or Tensor): The instance kernel mask with |
|
size hxw. |
|
internal_kernel_label (np.array or Tensor): The instance internal |
|
kernel label with size hxw. |
|
min_kernel_area (int): The minimum kernel area. |
|
kernel_num (int): The instance kernel number. |
|
|
|
Returns: |
|
label (list): The instance index map with size hxw. |
|
""" |
|
assert isinstance(kernel_mask, (torch.Tensor, np.ndarray)) |
|
assert isinstance(internal_kernel_label, (torch.Tensor, np.ndarray)) |
|
assert isinstance(min_kernel_area, int) |
|
assert isinstance(kernel_num, int) |
|
|
|
if isinstance(kernel_mask, np.ndarray): |
|
kernel_mask = torch.from_numpy(kernel_mask) |
|
if isinstance(internal_kernel_label, np.ndarray): |
|
internal_kernel_label = torch.from_numpy(internal_kernel_label) |
|
|
|
if torch.__version__ == 'parrots': |
|
if kernel_mask.shape[0] == 0 or internal_kernel_label.shape[0] == 0: |
|
label = [] |
|
else: |
|
label = ext_module.contour_expand( |
|
kernel_mask, |
|
internal_kernel_label, |
|
min_kernel_area=min_kernel_area, |
|
kernel_num=kernel_num) |
|
label = label.tolist() |
|
else: |
|
label = ext_module.contour_expand(kernel_mask, internal_kernel_label, |
|
min_kernel_area, kernel_num) |
|
return label |
|
|