|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
import PIL.Image |
|
from PIL import Image |
|
from typing import Union |
|
|
|
|
|
class DepthModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.device = 'cpu' |
|
|
|
def to(self, device) -> nn.Module: |
|
self.device = device |
|
return super().to(device) |
|
|
|
def forward(self, x, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
def _infer(self, x: torch.Tensor): |
|
""" |
|
Inference interface for the model |
|
Args: |
|
x (torch.Tensor): input tensor of shape (b, c, h, w) |
|
Returns: |
|
torch.Tensor: output tensor of shape (b, 1, h, w) |
|
""" |
|
return self(x)['metric_depth'] |
|
|
|
def _infer_with_pad_aug(self, x: torch.Tensor, pad_input: bool=True, fh: float=3, fw: float=3, upsampling_mode: str='bicubic', padding_mode="reflect", **kwargs) -> torch.Tensor: |
|
""" |
|
Inference interface for the model with padding augmentation |
|
Padding augmentation fixes the boundary artifacts in the output depth map. |
|
Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image. |
|
This augmentation pads the input image and crops the prediction back to the original size / view. |
|
|
|
Note: This augmentation is not required for the models trained with 'avoid_boundary'=True. |
|
Args: |
|
x (torch.Tensor): input tensor of shape (b, c, h, w) |
|
pad_input (bool, optional): whether to pad the input or not. Defaults to True. |
|
fh (float, optional): height padding factor. The padding is calculated as sqrt(h/2) * fh. Defaults to 3. |
|
fw (float, optional): width padding factor. The padding is calculated as sqrt(w/2) * fw. Defaults to 3. |
|
upsampling_mode (str, optional): upsampling mode. Defaults to 'bicubic'. |
|
padding_mode (str, optional): padding mode. Defaults to "reflect". |
|
Returns: |
|
torch.Tensor: output tensor of shape (b, 1, h, w) |
|
""" |
|
|
|
assert x.dim() == 4, "x must be 4 dimensional, got {}".format(x.dim()) |
|
assert x.shape[1] == 3, "x must have 3 channels, got {}".format(x.shape[1]) |
|
|
|
if pad_input: |
|
assert fh > 0 or fw > 0, "atlease one of fh and fw must be greater than 0" |
|
pad_h = int(np.sqrt(x.shape[2]/2) * fh) |
|
pad_w = int(np.sqrt(x.shape[3]/2) * fw) |
|
padding = [pad_w, pad_w] |
|
if pad_h > 0: |
|
padding += [pad_h, pad_h] |
|
|
|
x = F.pad(x, padding, mode=padding_mode, **kwargs) |
|
out = self._infer(x) |
|
if out.shape[-2:] != x.shape[-2:]: |
|
out = F.interpolate(out, size=(x.shape[2], x.shape[3]), mode=upsampling_mode, align_corners=False) |
|
if pad_input: |
|
|
|
if pad_h > 0: |
|
out = out[:, :, pad_h:-pad_h,:] |
|
if pad_w > 0: |
|
out = out[:, :, :, pad_w:-pad_w] |
|
return out |
|
|
|
def infer_with_flip_aug(self, x, pad_input: bool=True, **kwargs) -> torch.Tensor: |
|
""" |
|
Inference interface for the model with horizontal flip augmentation |
|
Horizontal flip augmentation improves the accuracy of the model by averaging the output of the model with and without horizontal flip. |
|
Args: |
|
x (torch.Tensor): input tensor of shape (b, c, h, w) |
|
pad_input (bool, optional): whether to use padding augmentation. Defaults to True. |
|
Returns: |
|
torch.Tensor: output tensor of shape (b, 1, h, w) |
|
""" |
|
|
|
out = self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs) |
|
out_flip = self._infer_with_pad_aug(torch.flip(x, dims=[3]), pad_input=pad_input, **kwargs) |
|
out = (out + torch.flip(out_flip, dims=[3])) / 2 |
|
return out |
|
|
|
def infer(self, x, pad_input: bool=True, with_flip_aug: bool=True, **kwargs) -> torch.Tensor: |
|
""" |
|
Inference interface for the model |
|
Args: |
|
x (torch.Tensor): input tensor of shape (b, c, h, w) |
|
pad_input (bool, optional): whether to use padding augmentation. Defaults to True. |
|
with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. |
|
Returns: |
|
torch.Tensor: output tensor of shape (b, 1, h, w) |
|
""" |
|
if with_flip_aug: |
|
return self.infer_with_flip_aug(x, pad_input=pad_input, **kwargs) |
|
else: |
|
return self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs) |
|
|
|
@torch.no_grad() |
|
def infer_pil(self, pil_img, pad_input: bool=True, with_flip_aug: bool=True, output_type: str="numpy", **kwargs) -> Union[np.ndarray, PIL.Image.Image, torch.Tensor]: |
|
""" |
|
Inference interface for the model for PIL image |
|
Args: |
|
pil_img (PIL.Image.Image): input PIL image |
|
pad_input (bool, optional): whether to use padding augmentation. Defaults to True. |
|
with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. |
|
output_type (str, optional): output type. Supported values are 'numpy', 'pil' and 'tensor'. Defaults to "numpy". |
|
""" |
|
x = transforms.ToTensor()(pil_img).unsqueeze(0).to(self.device) |
|
out_tensor = self.infer(x, pad_input=pad_input, with_flip_aug=with_flip_aug, **kwargs) |
|
if output_type == "numpy": |
|
return out_tensor.squeeze().cpu().numpy() |
|
elif output_type == "pil": |
|
|
|
out_16bit_numpy = (out_tensor.squeeze().cpu().numpy()*256).astype(np.uint16) |
|
return Image.fromarray(out_16bit_numpy) |
|
elif output_type == "tensor": |
|
return out_tensor.squeeze().cpu() |
|
else: |
|
raise ValueError(f"output_type {output_type} not supported. Supported values are 'numpy', 'pil' and 'tensor'") |
|
|