|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from annotator.uniformer.mmcv.cnn import ConvModule, xavier_init |
|
|
|
from ..builder import NECKS |
|
|
|
|
|
@NECKS.register_module() |
|
class FPN(nn.Module): |
|
"""Feature Pyramid Network. |
|
|
|
This is an implementation of - Feature Pyramid Networks for Object |
|
Detection (https://arxiv.org/abs/1612.03144) |
|
|
|
Args: |
|
in_channels (List[int]): Number of input channels per scale. |
|
out_channels (int): Number of output channels (used at each scale) |
|
num_outs (int): Number of output scales. |
|
start_level (int): Index of the start input backbone level used to |
|
build the feature pyramid. Default: 0. |
|
end_level (int): Index of the end input backbone level (exclusive) to |
|
build the feature pyramid. Default: -1, which means the last level. |
|
add_extra_convs (bool | str): If bool, it decides whether to add conv |
|
layers on top of the original feature maps. Default to False. |
|
If True, its actual mode is specified by `extra_convs_on_inputs`. |
|
If str, it specifies the source feature map of the extra convs. |
|
Only the following options are allowed |
|
|
|
- 'on_input': Last feat map of neck inputs (i.e. backbone feature). |
|
- 'on_lateral': Last feature map after lateral convs. |
|
- 'on_output': The last output feature map after fpn convs. |
|
extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs |
|
on the original feature from the backbone. If True, |
|
it is equivalent to `add_extra_convs='on_input'`. If False, it is |
|
equivalent to set `add_extra_convs='on_output'`. Default to True. |
|
relu_before_extra_convs (bool): Whether to apply relu before the extra |
|
conv. Default: False. |
|
no_norm_on_lateral (bool): Whether to apply norm on lateral. |
|
Default: False. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None. |
|
norm_cfg (dict): Config dict for normalization layer. Default: None. |
|
act_cfg (str): Config dict for activation layer in ConvModule. |
|
Default: None. |
|
upsample_cfg (dict): Config dict for interpolate layer. |
|
Default: `dict(mode='nearest')` |
|
|
|
Example: |
|
>>> import torch |
|
>>> in_channels = [2, 3, 5, 7] |
|
>>> scales = [340, 170, 84, 43] |
|
>>> inputs = [torch.rand(1, c, s, s) |
|
... for c, s in zip(in_channels, scales)] |
|
>>> self = FPN(in_channels, 11, len(in_channels)).eval() |
|
>>> outputs = self.forward(inputs) |
|
>>> for i in range(len(outputs)): |
|
... print(f'outputs[{i}].shape = {outputs[i].shape}') |
|
outputs[0].shape = torch.Size([1, 11, 340, 340]) |
|
outputs[1].shape = torch.Size([1, 11, 170, 170]) |
|
outputs[2].shape = torch.Size([1, 11, 84, 84]) |
|
outputs[3].shape = torch.Size([1, 11, 43, 43]) |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
num_outs, |
|
start_level=0, |
|
end_level=-1, |
|
add_extra_convs=False, |
|
extra_convs_on_inputs=False, |
|
relu_before_extra_convs=False, |
|
no_norm_on_lateral=False, |
|
conv_cfg=None, |
|
norm_cfg=None, |
|
act_cfg=None, |
|
upsample_cfg=dict(mode='nearest')): |
|
super(FPN, self).__init__() |
|
assert isinstance(in_channels, list) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.num_ins = len(in_channels) |
|
self.num_outs = num_outs |
|
self.relu_before_extra_convs = relu_before_extra_convs |
|
self.no_norm_on_lateral = no_norm_on_lateral |
|
self.fp16_enabled = False |
|
self.upsample_cfg = upsample_cfg.copy() |
|
|
|
if end_level == -1: |
|
self.backbone_end_level = self.num_ins |
|
assert num_outs >= self.num_ins - start_level |
|
else: |
|
|
|
self.backbone_end_level = end_level |
|
assert end_level <= len(in_channels) |
|
assert num_outs == end_level - start_level |
|
self.start_level = start_level |
|
self.end_level = end_level |
|
self.add_extra_convs = add_extra_convs |
|
assert isinstance(add_extra_convs, (str, bool)) |
|
if isinstance(add_extra_convs, str): |
|
|
|
assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') |
|
elif add_extra_convs: |
|
if extra_convs_on_inputs: |
|
|
|
|
|
self.add_extra_convs = 'on_input' |
|
else: |
|
self.add_extra_convs = 'on_output' |
|
|
|
self.lateral_convs = nn.ModuleList() |
|
self.fpn_convs = nn.ModuleList() |
|
|
|
for i in range(self.start_level, self.backbone_end_level): |
|
l_conv = ConvModule( |
|
in_channels[i], |
|
out_channels, |
|
1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, |
|
act_cfg=act_cfg, |
|
inplace=False) |
|
fpn_conv = ConvModule( |
|
out_channels, |
|
out_channels, |
|
3, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
inplace=False) |
|
|
|
self.lateral_convs.append(l_conv) |
|
self.fpn_convs.append(fpn_conv) |
|
|
|
|
|
extra_levels = num_outs - self.backbone_end_level + self.start_level |
|
if self.add_extra_convs and extra_levels >= 1: |
|
for i in range(extra_levels): |
|
if i == 0 and self.add_extra_convs == 'on_input': |
|
in_channels = self.in_channels[self.backbone_end_level - 1] |
|
else: |
|
in_channels = out_channels |
|
extra_fpn_conv = ConvModule( |
|
in_channels, |
|
out_channels, |
|
3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
inplace=False) |
|
self.fpn_convs.append(extra_fpn_conv) |
|
|
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
xavier_init(m, distribution='uniform') |
|
|
|
def forward(self, inputs): |
|
assert len(inputs) == len(self.in_channels) |
|
|
|
|
|
laterals = [ |
|
lateral_conv(inputs[i + self.start_level]) |
|
for i, lateral_conv in enumerate(self.lateral_convs) |
|
] |
|
|
|
|
|
used_backbone_levels = len(laterals) |
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
|
|
|
|
if 'scale_factor' in self.upsample_cfg: |
|
laterals[i - 1] += F.interpolate(laterals[i], |
|
**self.upsample_cfg) |
|
else: |
|
prev_shape = laterals[i - 1].shape[2:] |
|
laterals[i - 1] += F.interpolate( |
|
laterals[i], size=prev_shape, **self.upsample_cfg) |
|
|
|
|
|
|
|
outs = [ |
|
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) |
|
] |
|
|
|
if self.num_outs > len(outs): |
|
|
|
|
|
if not self.add_extra_convs: |
|
for i in range(self.num_outs - used_backbone_levels): |
|
outs.append(F.max_pool2d(outs[-1], 1, stride=2)) |
|
|
|
else: |
|
if self.add_extra_convs == 'on_input': |
|
extra_source = inputs[self.backbone_end_level - 1] |
|
elif self.add_extra_convs == 'on_lateral': |
|
extra_source = laterals[-1] |
|
elif self.add_extra_convs == 'on_output': |
|
extra_source = outs[-1] |
|
else: |
|
raise NotImplementedError |
|
outs.append(self.fpn_convs[used_backbone_levels](extra_source)) |
|
for i in range(used_backbone_levels + 1, self.num_outs): |
|
if self.relu_before_extra_convs: |
|
outs.append(self.fpn_convs[i](F.relu(outs[-1]))) |
|
else: |
|
outs.append(self.fpn_convs[i](outs[-1])) |
|
return tuple(outs) |
|
|