|
|
|
import logging |
|
|
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
|
|
from .utils import constant_init, kaiming_init |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, dilation=1): |
|
"""3x3 convolution with padding.""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
dilation=1, |
|
downsample=None, |
|
style='pytorch', |
|
with_cp=False): |
|
super(BasicBlock, self).__init__() |
|
assert style in ['pytorch', 'caffe'] |
|
self.conv1 = conv3x3(inplanes, planes, stride, dilation) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.dilation = dilation |
|
assert not with_cp |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
dilation=1, |
|
downsample=None, |
|
style='pytorch', |
|
with_cp=False): |
|
"""Bottleneck block. |
|
|
|
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if |
|
it is "caffe", the stride-two layer is the first 1x1 conv layer. |
|
""" |
|
super(Bottleneck, self).__init__() |
|
assert style in ['pytorch', 'caffe'] |
|
if style == 'pytorch': |
|
conv1_stride = 1 |
|
conv2_stride = stride |
|
else: |
|
conv1_stride = stride |
|
conv2_stride = 1 |
|
self.conv1 = nn.Conv2d( |
|
inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False) |
|
self.conv2 = nn.Conv2d( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=conv2_stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False) |
|
|
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d( |
|
planes, planes * self.expansion, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.with_cp = with_cp |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
def make_res_layer(block, |
|
inplanes, |
|
planes, |
|
blocks, |
|
stride=1, |
|
dilation=1, |
|
style='pytorch', |
|
with_cp=False): |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
stride, |
|
dilation, |
|
downsample, |
|
style=style, |
|
with_cp=with_cp)) |
|
inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
class ResNet(nn.Module): |
|
"""ResNet backbone. |
|
|
|
Args: |
|
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. |
|
num_stages (int): Resnet stages, normally 4. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
out_indices (Sequence[int]): Output from which stages. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means |
|
not freezing any parameters. |
|
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze |
|
running stats (mean and var). |
|
bn_frozen (bool): Whether to freeze weight and bias of BN layers. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
""" |
|
|
|
arch_settings = { |
|
18: (BasicBlock, (2, 2, 2, 2)), |
|
34: (BasicBlock, (3, 4, 6, 3)), |
|
50: (Bottleneck, (3, 4, 6, 3)), |
|
101: (Bottleneck, (3, 4, 23, 3)), |
|
152: (Bottleneck, (3, 8, 36, 3)) |
|
} |
|
|
|
def __init__(self, |
|
depth, |
|
num_stages=4, |
|
strides=(1, 2, 2, 2), |
|
dilations=(1, 1, 1, 1), |
|
out_indices=(0, 1, 2, 3), |
|
style='pytorch', |
|
frozen_stages=-1, |
|
bn_eval=True, |
|
bn_frozen=False, |
|
with_cp=False): |
|
super(ResNet, self).__init__() |
|
if depth not in self.arch_settings: |
|
raise KeyError(f'invalid depth {depth} for resnet') |
|
assert num_stages >= 1 and num_stages <= 4 |
|
block, stage_blocks = self.arch_settings[depth] |
|
stage_blocks = stage_blocks[:num_stages] |
|
assert len(strides) == len(dilations) == num_stages |
|
assert max(out_indices) < num_stages |
|
|
|
self.out_indices = out_indices |
|
self.style = style |
|
self.frozen_stages = frozen_stages |
|
self.bn_eval = bn_eval |
|
self.bn_frozen = bn_frozen |
|
self.with_cp = with_cp |
|
|
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d( |
|
3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.res_layers = [] |
|
for i, num_blocks in enumerate(stage_blocks): |
|
stride = strides[i] |
|
dilation = dilations[i] |
|
planes = 64 * 2**i |
|
res_layer = make_res_layer( |
|
block, |
|
self.inplanes, |
|
planes, |
|
num_blocks, |
|
stride=stride, |
|
dilation=dilation, |
|
style=self.style, |
|
with_cp=with_cp) |
|
self.inplanes = planes * block.expansion |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, res_layer) |
|
self.res_layers.append(layer_name) |
|
|
|
self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1) |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
from ..runner import load_checkpoint |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
constant_init(m, 1) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
outs = [] |
|
for i, layer_name in enumerate(self.res_layers): |
|
res_layer = getattr(self, layer_name) |
|
x = res_layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
if len(outs) == 1: |
|
return outs[0] |
|
else: |
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
super(ResNet, self).train(mode) |
|
if self.bn_eval: |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eval() |
|
if self.bn_frozen: |
|
for params in m.parameters(): |
|
params.requires_grad = False |
|
if mode and self.frozen_stages >= 0: |
|
for param in self.conv1.parameters(): |
|
param.requires_grad = False |
|
for param in self.bn1.parameters(): |
|
param.requires_grad = False |
|
self.bn1.eval() |
|
self.bn1.weight.requires_grad = False |
|
self.bn1.bias.requires_grad = False |
|
for i in range(1, self.frozen_stages + 1): |
|
mod = getattr(self, f'layer{i}') |
|
mod.eval() |
|
for param in mod.parameters(): |
|
param.requires_grad = False |
|
|