|
import warnings |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def resize(input, |
|
size=None, |
|
scale_factor=None, |
|
mode='nearest', |
|
align_corners=None, |
|
warning=True): |
|
if warning: |
|
if size is not None and align_corners: |
|
input_h, input_w = tuple(int(x) for x in input.shape[2:]) |
|
output_h, output_w = tuple(int(x) for x in size) |
|
if output_h > input_h or output_w > output_h: |
|
if ((output_h > 1 and output_w > 1 and input_h > 1 |
|
and input_w > 1) and (output_h - 1) % (input_h - 1) |
|
and (output_w - 1) % (input_w - 1)): |
|
warnings.warn( |
|
f'When align_corners={align_corners}, ' |
|
'the output would more aligned if ' |
|
f'input size {(input_h, input_w)} is `x+1` and ' |
|
f'out size {(output_h, output_w)} is `nx+1`') |
|
return F.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
|
|
class Upsample(nn.Module): |
|
|
|
def __init__(self, |
|
size=None, |
|
scale_factor=None, |
|
mode='nearest', |
|
align_corners=None): |
|
super(Upsample, self).__init__() |
|
self.size = size |
|
if isinstance(scale_factor, tuple): |
|
self.scale_factor = tuple(float(factor) for factor in scale_factor) |
|
else: |
|
self.scale_factor = float(scale_factor) if scale_factor else None |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
|
|
def forward(self, x): |
|
if not self.size: |
|
size = [int(t * self.scale_factor) for t in x.shape[-2:]] |
|
else: |
|
size = self.size |
|
return resize(x, size, None, self.mode, self.align_corners) |
|
|