|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from annotator.mmpkg.mmcv.cnn import build_conv_layer, build_norm_layer |
|
|
|
from ..builder import BACKBONES |
|
from ..utils import ResLayer |
|
from .resnet import Bottleneck as _Bottleneck |
|
from .resnet import ResNetV1d |
|
|
|
|
|
class RSoftmax(nn.Module): |
|
"""Radix Softmax module in ``SplitAttentionConv2d``. |
|
|
|
Args: |
|
radix (int): Radix of input. |
|
groups (int): Groups of input. |
|
""" |
|
|
|
def __init__(self, radix, groups): |
|
super().__init__() |
|
self.radix = radix |
|
self.groups = groups |
|
|
|
def forward(self, x): |
|
batch = x.size(0) |
|
if self.radix > 1: |
|
x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) |
|
x = F.softmax(x, dim=1) |
|
x = x.reshape(batch, -1) |
|
else: |
|
x = torch.sigmoid(x) |
|
return x |
|
|
|
|
|
class SplitAttentionConv2d(nn.Module): |
|
"""Split-Attention Conv2d in ResNeSt. |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int | tuple[int]): Same as nn.Conv2d. |
|
stride (int | tuple[int]): Same as nn.Conv2d. |
|
padding (int | tuple[int]): Same as nn.Conv2d. |
|
dilation (int | tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of inter_channels. Default: 4. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None, |
|
which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. Default: None. |
|
dcn (dict): Config dict for DCN. Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
radix=2, |
|
reduction_factor=4, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
dcn=None): |
|
super(SplitAttentionConv2d, self).__init__() |
|
inter_channels = max(in_channels * radix // reduction_factor, 32) |
|
self.radix = radix |
|
self.groups = groups |
|
self.channels = channels |
|
self.with_dcn = dcn is not None |
|
self.dcn = dcn |
|
fallback_on_stride = False |
|
if self.with_dcn: |
|
fallback_on_stride = self.dcn.pop('fallback_on_stride', False) |
|
if self.with_dcn and not fallback_on_stride: |
|
assert conv_cfg is None, 'conv_cfg must be None for DCN' |
|
conv_cfg = dcn |
|
self.conv = build_conv_layer( |
|
conv_cfg, |
|
in_channels, |
|
channels * radix, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups * radix, |
|
bias=False) |
|
self.norm0_name, norm0 = build_norm_layer( |
|
norm_cfg, channels * radix, postfix=0) |
|
self.add_module(self.norm0_name, norm0) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.fc1 = build_conv_layer( |
|
None, channels, inter_channels, 1, groups=self.groups) |
|
self.norm1_name, norm1 = build_norm_layer( |
|
norm_cfg, inter_channels, postfix=1) |
|
self.add_module(self.norm1_name, norm1) |
|
self.fc2 = build_conv_layer( |
|
None, inter_channels, channels * radix, 1, groups=self.groups) |
|
self.rsoftmax = RSoftmax(radix, groups) |
|
|
|
@property |
|
def norm0(self): |
|
"""nn.Module: the normalization layer named "norm0" """ |
|
return getattr(self, self.norm0_name) |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm0(x) |
|
x = self.relu(x) |
|
|
|
batch, rchannel = x.shape[:2] |
|
batch = x.size(0) |
|
if self.radix > 1: |
|
splits = x.view(batch, self.radix, -1, *x.shape[2:]) |
|
gap = splits.sum(dim=1) |
|
else: |
|
gap = x |
|
gap = F.adaptive_avg_pool2d(gap, 1) |
|
gap = self.fc1(gap) |
|
|
|
gap = self.norm1(gap) |
|
gap = self.relu(gap) |
|
|
|
atten = self.fc2(gap) |
|
atten = self.rsoftmax(atten).view(batch, -1, 1, 1) |
|
|
|
if self.radix > 1: |
|
attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) |
|
out = torch.sum(attens * splits, dim=1) |
|
else: |
|
out = atten * x |
|
return out.contiguous() |
|
|
|
|
|
class Bottleneck(_Bottleneck): |
|
"""Bottleneck block for ResNeSt. |
|
|
|
Args: |
|
inplane (int): Input planes of this block. |
|
planes (int): Middle planes of this block. |
|
groups (int): Groups of conv2. |
|
width_per_group (int): Width per group of conv2. 64x4d indicates |
|
``groups=64, width_per_group=4`` and 32x8d indicates |
|
``groups=32, width_per_group=8``. |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of inter_channels in |
|
SplitAttentionConv2d. Default: 4. |
|
avg_down_stride (bool): Whether to use average pool for stride in |
|
Bottleneck. Default: True. |
|
kwargs (dict): Key word arguments for base class. |
|
""" |
|
expansion = 4 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
groups=1, |
|
base_width=4, |
|
base_channels=64, |
|
radix=2, |
|
reduction_factor=4, |
|
avg_down_stride=True, |
|
**kwargs): |
|
"""Bottleneck block for ResNeSt.""" |
|
super(Bottleneck, self).__init__(inplanes, planes, **kwargs) |
|
|
|
if groups == 1: |
|
width = self.planes |
|
else: |
|
width = math.floor(self.planes * |
|
(base_width / base_channels)) * groups |
|
|
|
self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, width, postfix=1) |
|
self.norm3_name, norm3 = build_norm_layer( |
|
self.norm_cfg, self.planes * self.expansion, postfix=3) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
self.inplanes, |
|
width, |
|
kernel_size=1, |
|
stride=self.conv1_stride, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
self.with_modulated_dcn = False |
|
self.conv2 = SplitAttentionConv2d( |
|
width, |
|
width, |
|
kernel_size=3, |
|
stride=1 if self.avg_down_stride else self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
groups=groups, |
|
radix=radix, |
|
reduction_factor=reduction_factor, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
dcn=self.dcn) |
|
delattr(self, self.norm2_name) |
|
|
|
if self.avg_down_stride: |
|
self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) |
|
|
|
self.conv3 = build_conv_layer( |
|
self.conv_cfg, |
|
width, |
|
self.planes * self.expansion, |
|
kernel_size=1, |
|
bias=False) |
|
self.add_module(self.norm3_name, norm3) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.relu(out) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv1_plugin_names) |
|
|
|
out = self.conv2(out) |
|
|
|
if self.avg_down_stride: |
|
out = self.avd_layer(out) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv2_plugin_names) |
|
|
|
out = self.conv3(out) |
|
out = self.norm3(out) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv3_plugin_names) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNeSt(ResNetV1d): |
|
"""ResNeSt backbone. |
|
|
|
Args: |
|
groups (int): Number of groups of Bottleneck. Default: 1 |
|
base_width (int): Base width of Bottleneck. Default: 4 |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of inter_channels in |
|
SplitAttentionConv2d. Default: 4. |
|
avg_down_stride (bool): Whether to use average pool for stride in |
|
Bottleneck. Default: True. |
|
kwargs (dict): Keyword arguments for ResNet. |
|
""" |
|
|
|
arch_settings = { |
|
50: (Bottleneck, (3, 4, 6, 3)), |
|
101: (Bottleneck, (3, 4, 23, 3)), |
|
152: (Bottleneck, (3, 8, 36, 3)), |
|
200: (Bottleneck, (3, 24, 36, 3)) |
|
} |
|
|
|
def __init__(self, |
|
groups=1, |
|
base_width=4, |
|
radix=2, |
|
reduction_factor=4, |
|
avg_down_stride=True, |
|
**kwargs): |
|
self.groups = groups |
|
self.base_width = base_width |
|
self.radix = radix |
|
self.reduction_factor = reduction_factor |
|
self.avg_down_stride = avg_down_stride |
|
super(ResNeSt, self).__init__(**kwargs) |
|
|
|
def make_res_layer(self, **kwargs): |
|
"""Pack all blocks in a stage into a ``ResLayer``.""" |
|
return ResLayer( |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
base_channels=self.base_channels, |
|
radix=self.radix, |
|
reduction_factor=self.reduction_factor, |
|
avg_down_stride=self.avg_down_stride, |
|
**kwargs) |
|
|