atatakun's picture
Duplicate from atatakun/testapp2
18dd6ad
raw
history blame
10.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import os
import os.path as osp
from collections import OrderedDict
import torch
import torch.distributed as dist
import annotator.mmpkg.mmcv as mmcv
from annotator.mmpkg.mmcv.fileio.file_client import FileClient
from annotator.mmpkg.mmcv.utils import is_tuple_of, scandir
from ..hook import HOOKS
from .base import LoggerHook
@HOOKS.register_module()
class TextLoggerHook(LoggerHook):
"""Logger hook in text.
In this logger hook, the information will be printed on terminal and
saved in json file.
Args:
by_epoch (bool, optional): Whether EpochBasedRunner is used.
Default: True.
interval (int, optional): Logging interval (every k iterations).
Default: 10.
ignore_last (bool, optional): Ignore the log of last iterations in each
epoch if less than :attr:`interval`. Default: True.
reset_flag (bool, optional): Whether to clear the output buffer after
logging. Default: False.
interval_exp_name (int, optional): Logging interval for experiment
name. This feature is to help users conveniently get the experiment
information from screen or log file. Default: 1000.
out_dir (str, optional): Logs are saved in ``runner.work_dir`` default.
If ``out_dir`` is specified, logs will be copied to a new directory
which is the concatenation of ``out_dir`` and the last level
directory of ``runner.work_dir``. Default: None.
`New in version 1.3.16.`
out_suffix (str or tuple[str], optional): Those filenames ending with
``out_suffix`` will be copied to ``out_dir``.
Default: ('.log.json', '.log', '.py').
`New in version 1.3.16.`
keep_local (bool, optional): Whether to keep local log when
:attr:`out_dir` is specified. If False, the local log will be
removed. Default: True.
`New in version 1.3.16.`
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmcv.fileio.FileClient` for details.
Default: None.
`New in version 1.3.16.`
"""
def __init__(self,
by_epoch=True,
interval=10,
ignore_last=True,
reset_flag=False,
interval_exp_name=1000,
out_dir=None,
out_suffix=('.log.json', '.log', '.py'),
keep_local=True,
file_client_args=None):
super(TextLoggerHook, self).__init__(interval, ignore_last, reset_flag,
by_epoch)
self.by_epoch = by_epoch
self.time_sec_tot = 0
self.interval_exp_name = interval_exp_name
if out_dir is None and file_client_args is not None:
raise ValueError(
'file_client_args should be "None" when `out_dir` is not'
'specified.')
self.out_dir = out_dir
if not (out_dir is None or isinstance(out_dir, str)
or is_tuple_of(out_dir, str)):
raise TypeError('out_dir should be "None" or string or tuple of '
'string, but got {out_dir}')
self.out_suffix = out_suffix
self.keep_local = keep_local
self.file_client_args = file_client_args
if self.out_dir is not None:
self.file_client = FileClient.infer_client(file_client_args,
self.out_dir)
def before_run(self, runner):
super(TextLoggerHook, self).before_run(runner)
if self.out_dir is not None:
self.file_client = FileClient.infer_client(self.file_client_args,
self.out_dir)
# The final `self.out_dir` is the concatenation of `self.out_dir`
# and the last level directory of `runner.work_dir`
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
self.out_dir = self.file_client.join_path(self.out_dir, basename)
runner.logger.info(
(f'Text logs will be saved to {self.out_dir} by '
f'{self.file_client.name} after the training process.'))
self.start_iter = runner.iter
self.json_log_path = osp.join(runner.work_dir,
f'{runner.timestamp}.log.json')
if runner.meta is not None:
self._dump_log(runner.meta, runner)
def _get_max_memory(self, runner):
device = getattr(runner.model, 'output_device', None)
mem = torch.cuda.max_memory_allocated(device=device)
mem_mb = torch.tensor([mem / (1024 * 1024)],
dtype=torch.int,
device=device)
if runner.world_size > 1:
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX)
return mem_mb.item()
def _log_info(self, log_dict, runner):
# print exp name for users to distinguish experiments
# at every ``interval_exp_name`` iterations and the end of each epoch
if runner.meta is not None and 'exp_name' in runner.meta:
if (self.every_n_iters(runner, self.interval_exp_name)) or (
self.by_epoch and self.end_of_epoch(runner)):
exp_info = f'Exp name: {runner.meta["exp_name"]}'
runner.logger.info(exp_info)
if log_dict['mode'] == 'train':
if isinstance(log_dict['lr'], dict):
lr_str = []
for k, val in log_dict['lr'].items():
lr_str.append(f'lr_{k}: {val:.3e}')
lr_str = ' '.join(lr_str)
else:
lr_str = f'lr: {log_dict["lr"]:.3e}'
# by epoch: Epoch [4][100/1000]
# by iter: Iter [100/100000]
if self.by_epoch:
log_str = f'Epoch [{log_dict["epoch"]}]' \
f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t'
else:
log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t'
log_str += f'{lr_str}, '
if 'time' in log_dict.keys():
self.time_sec_tot += (log_dict['time'] * self.interval)
time_sec_avg = self.time_sec_tot / (
runner.iter - self.start_iter + 1)
eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1)
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
log_str += f'eta: {eta_str}, '
log_str += f'time: {log_dict["time"]:.3f}, ' \
f'data_time: {log_dict["data_time"]:.3f}, '
# statistic memory
if torch.cuda.is_available():
log_str += f'memory: {log_dict["memory"]}, '
else:
# val/test time
# here 1000 is the length of the val dataloader
# by epoch: Epoch[val] [4][1000]
# by iter: Iter[val] [1000]
if self.by_epoch:
log_str = f'Epoch({log_dict["mode"]}) ' \
f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t'
else:
log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t'
log_items = []
for name, val in log_dict.items():
# TODO: resolve this hack
# these items have been in log_str
if name in [
'mode', 'Epoch', 'iter', 'lr', 'time', 'data_time',
'memory', 'epoch'
]:
continue
if isinstance(val, float):
val = f'{val:.4f}'
log_items.append(f'{name}: {val}')
log_str += ', '.join(log_items)
runner.logger.info(log_str)
def _dump_log(self, log_dict, runner):
# dump log in json format
json_log = OrderedDict()
for k, v in log_dict.items():
json_log[k] = self._round_float(v)
# only append log at last line
if runner.rank == 0:
with open(self.json_log_path, 'a+') as f:
mmcv.dump(json_log, f, file_format='json')
f.write('\n')
def _round_float(self, items):
if isinstance(items, list):
return [self._round_float(item) for item in items]
elif isinstance(items, float):
return round(items, 5)
else:
return items
def log(self, runner):
if 'eval_iter_num' in runner.log_buffer.output:
# this doesn't modify runner.iter and is regardless of by_epoch
cur_iter = runner.log_buffer.output.pop('eval_iter_num')
else:
cur_iter = self.get_iter(runner, inner_iter=True)
log_dict = OrderedDict(
mode=self.get_mode(runner),
epoch=self.get_epoch(runner),
iter=cur_iter)
# only record lr of the first param group
cur_lr = runner.current_lr()
if isinstance(cur_lr, list):
log_dict['lr'] = cur_lr[0]
else:
assert isinstance(cur_lr, dict)
log_dict['lr'] = {}
for k, lr_ in cur_lr.items():
assert isinstance(lr_, list)
log_dict['lr'].update({k: lr_[0]})
if 'time' in runner.log_buffer.output:
# statistic memory
if torch.cuda.is_available():
log_dict['memory'] = self._get_max_memory(runner)
log_dict = dict(log_dict, **runner.log_buffer.output)
self._log_info(log_dict, runner)
self._dump_log(log_dict, runner)
return log_dict
def after_run(self, runner):
# copy or upload logs to self.out_dir
if self.out_dir is not None:
for filename in scandir(runner.work_dir, self.out_suffix, True):
local_filepath = osp.join(runner.work_dir, filename)
out_filepath = self.file_client.join_path(
self.out_dir, filename)
with open(local_filepath, 'r') as f:
self.file_client.put_text(f.read(), out_filepath)
runner.logger.info(
(f'The file {local_filepath} has been uploaded to '
f'{out_filepath}.'))
if not self.keep_local:
os.remove(local_filepath)
runner.logger.info(
(f'{local_filepath} was removed due to the '
'`self.keep_local=False`'))