|
|
|
import json |
|
import os |
|
import os.path as osp |
|
|
|
import torch |
|
import yaml |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
from ....parallel.utils import is_module_wrapper |
|
from ...dist_utils import master_only |
|
from ..hook import HOOKS |
|
from .base import LoggerHook |
|
|
|
|
|
@HOOKS.register_module() |
|
class PaviLoggerHook(LoggerHook): |
|
|
|
def __init__(self, |
|
init_kwargs=None, |
|
add_graph=False, |
|
add_last_ckpt=False, |
|
interval=10, |
|
ignore_last=True, |
|
reset_flag=False, |
|
by_epoch=True, |
|
img_key='img_info'): |
|
super(PaviLoggerHook, self).__init__(interval, ignore_last, reset_flag, |
|
by_epoch) |
|
self.init_kwargs = init_kwargs |
|
self.add_graph = add_graph |
|
self.add_last_ckpt = add_last_ckpt |
|
self.img_key = img_key |
|
|
|
@master_only |
|
def before_run(self, runner): |
|
super(PaviLoggerHook, self).before_run(runner) |
|
try: |
|
from pavi import SummaryWriter |
|
except ImportError: |
|
raise ImportError('Please run "pip install pavi" to install pavi.') |
|
|
|
self.run_name = runner.work_dir.split('/')[-1] |
|
|
|
if not self.init_kwargs: |
|
self.init_kwargs = dict() |
|
self.init_kwargs['name'] = self.run_name |
|
self.init_kwargs['model'] = runner._model_name |
|
if runner.meta is not None: |
|
if 'config_dict' in runner.meta: |
|
config_dict = runner.meta['config_dict'] |
|
assert isinstance( |
|
config_dict, |
|
dict), ('meta["config_dict"] has to be of a dict, ' |
|
f'but got {type(config_dict)}') |
|
elif 'config_file' in runner.meta: |
|
config_file = runner.meta['config_file'] |
|
config_dict = dict(mmcv.Config.fromfile(config_file)) |
|
else: |
|
config_dict = None |
|
if config_dict is not None: |
|
|
|
|
|
config_dict = config_dict.copy() |
|
config_dict.setdefault('max_iter', runner.max_iters) |
|
|
|
|
|
config_dict = json.loads( |
|
mmcv.dump(config_dict, file_format='json')) |
|
session_text = yaml.dump(config_dict) |
|
self.init_kwargs['session_text'] = session_text |
|
self.writer = SummaryWriter(**self.init_kwargs) |
|
|
|
def get_step(self, runner): |
|
"""Get the total training step/epoch.""" |
|
if self.get_mode(runner) == 'val' and self.by_epoch: |
|
return self.get_epoch(runner) |
|
else: |
|
return self.get_iter(runner) |
|
|
|
@master_only |
|
def log(self, runner): |
|
tags = self.get_loggable_tags(runner, add_mode=False) |
|
if tags: |
|
self.writer.add_scalars( |
|
self.get_mode(runner), tags, self.get_step(runner)) |
|
|
|
@master_only |
|
def after_run(self, runner): |
|
if self.add_last_ckpt: |
|
ckpt_path = osp.join(runner.work_dir, 'latest.pth') |
|
if osp.islink(ckpt_path): |
|
ckpt_path = osp.join(runner.work_dir, os.readlink(ckpt_path)) |
|
|
|
if osp.isfile(ckpt_path): |
|
|
|
iteration = runner.epoch if self.by_epoch else runner.iter |
|
return self.writer.add_snapshot_file( |
|
tag=self.run_name, |
|
snapshot_file_path=ckpt_path, |
|
iteration=iteration) |
|
|
|
|
|
self.writer.close() |
|
|
|
@master_only |
|
def before_epoch(self, runner): |
|
if runner.epoch == 0 and self.add_graph: |
|
if is_module_wrapper(runner.model): |
|
_model = runner.model.module |
|
else: |
|
_model = runner.model |
|
device = next(_model.parameters()).device |
|
data = next(iter(runner.data_loader)) |
|
image = data[self.img_key][0:1].to(device) |
|
with torch.no_grad(): |
|
self.writer.add_graph(_model, image) |
|
|