|
"""Modified from https://github.com/rwightman/pytorch-image- |
|
models/blob/master/timm/models/vision_transformer.py.""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer, |
|
constant_init, kaiming_init, normal_init) |
|
from annotator.uniformer.mmcv.runner import _load_checkpoint |
|
from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm |
|
|
|
from annotator.uniformer.mmseg.utils import get_root_logger |
|
from ..builder import BACKBONES |
|
from ..utils import DropPath, trunc_normal_ |
|
|
|
|
|
class Mlp(nn.Module): |
|
"""MLP layer for Encoder block. |
|
|
|
Args: |
|
in_features(int): Input dimension for the first fully |
|
connected layer. |
|
hidden_features(int): Output dimension for the first fully |
|
connected layer. |
|
out_features(int): Output dementsion for the second fully |
|
connected layer. |
|
act_cfg(dict): Config dict for activation layer. |
|
Default: dict(type='GELU'). |
|
drop(float): Drop rate for the dropout layer. Dropout rate has |
|
to be between 0 and 1. Default: 0. |
|
""" |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_cfg=dict(type='GELU'), |
|
drop=0.): |
|
super(Mlp, self).__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = Linear(in_features, hidden_features) |
|
self.act = build_activation_layer(act_cfg) |
|
self.fc2 = Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Attention layer for Encoder block. |
|
|
|
Args: |
|
dim (int): Dimension for the input vector. |
|
num_heads (int): Number of parallel attention heads. |
|
qkv_bias (bool): Enable bias for qkv if True. Default: False. |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
attn_drop (float): Drop rate for attention output weights. |
|
Default: 0. |
|
proj_drop (float): Drop rate for output weights. Default: 0. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0.): |
|
super(Attention, self).__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
b, n, c = x.shape |
|
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, |
|
c // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(b, n, c) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
"""Implements encoder block with residual connection. |
|
|
|
Args: |
|
dim (int): The feature dimension. |
|
num_heads (int): Number of parallel attention heads. |
|
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float): Drop rate for mlp output weights. Default: 0. |
|
attn_drop (float): Drop rate for attention output weights. |
|
Default: 0. |
|
proj_drop (float): Drop rate for attn layer output weights. |
|
Default: 0. |
|
drop_path (float): Drop rate for paths of model. |
|
Default: 0. |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='GELU'). |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN', requires_grad=True). |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
proj_drop=0., |
|
drop_path=0., |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN', eps=1e-6), |
|
with_cp=False): |
|
super(Block, self).__init__() |
|
self.with_cp = with_cp |
|
_, self.norm1 = build_norm_layer(norm_cfg, dim) |
|
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop, |
|
proj_drop) |
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
_, self.norm2 = build_norm_layer(norm_cfg, dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_cfg=act_cfg, |
|
drop=drop) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
out = x + self.drop_path(self.attn(self.norm1(x))) |
|
out = out + self.drop_path(self.mlp(self.norm2(out))) |
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding. |
|
|
|
Args: |
|
img_size (int | tuple): Input image size. |
|
default: 224. |
|
patch_size (int): Width and height for a patch. |
|
default: 16. |
|
in_channels (int): Input channels for images. Default: 3. |
|
embed_dim (int): The embedding dimension. Default: 768. |
|
""" |
|
|
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768): |
|
super(PatchEmbed, self).__init__() |
|
if isinstance(img_size, int): |
|
self.img_size = (img_size, img_size) |
|
elif isinstance(img_size, tuple): |
|
self.img_size = img_size |
|
else: |
|
raise TypeError('img_size must be type of int or tuple') |
|
h, w = self.img_size |
|
self.patch_size = (patch_size, patch_size) |
|
self.num_patches = (h // patch_size) * (w // patch_size) |
|
self.proj = Conv2d( |
|
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
return self.proj(x).flatten(2).transpose(1, 2) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class VisionTransformer(nn.Module): |
|
"""Vision transformer backbone. |
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for |
|
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 |
|
|
|
Args: |
|
img_size (tuple): input image size. Default: (224, 224). |
|
patch_size (int, tuple): patch size. Default: 16. |
|
in_channels (int): number of input channels. Default: 3. |
|
embed_dim (int): embedding dimension. Default: 768. |
|
depth (int): depth of transformer. Default: 12. |
|
num_heads (int): number of attention heads. Default: 12. |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim. |
|
Default: 4. |
|
out_indices (list | tuple | int): Output from which stages. |
|
Default: -1. |
|
qkv_bias (bool): enable bias for qkv if True. Default: True. |
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): dropout rate. Default: 0. |
|
attn_drop_rate (float): attention dropout rate. Default: 0. |
|
drop_path_rate (float): Rate of DropPath. Default: 0. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN', eps=1e-6, requires_grad=True). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='GELU'). |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
final_norm (bool): Whether to add a additional layer to normalize |
|
final feature map. Default: False. |
|
interpolate_mode (str): Select the interpolate mode for position |
|
embeding vector resize. Default: bicubic. |
|
with_cls_token (bool): If concatenating class token into image tokens |
|
as transformer input. Default: True. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint |
|
will save some memory while slowing down the training speed. |
|
Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
img_size=(224, 224), |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
out_indices=11, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True), |
|
act_cfg=dict(type='GELU'), |
|
norm_eval=False, |
|
final_norm=False, |
|
with_cls_token=True, |
|
interpolate_mode='bicubic', |
|
with_cp=False): |
|
super(VisionTransformer, self).__init__() |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.features = self.embed_dim = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=embed_dim) |
|
|
|
self.with_cls_token = with_cls_token |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
if isinstance(out_indices, int): |
|
self.out_indices = [out_indices] |
|
elif isinstance(out_indices, list) or isinstance(out_indices, tuple): |
|
self.out_indices = out_indices |
|
else: |
|
raise TypeError('out_indices must be type of int, list or tuple') |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) |
|
] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=dpr[i], |
|
attn_drop=attn_drop_rate, |
|
act_cfg=act_cfg, |
|
norm_cfg=norm_cfg, |
|
with_cp=with_cp) for i in range(depth) |
|
]) |
|
|
|
self.interpolate_mode = interpolate_mode |
|
self.final_norm = final_norm |
|
if final_norm: |
|
_, self.norm = build_norm_layer(norm_cfg, embed_dim) |
|
|
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
checkpoint = _load_checkpoint(pretrained, logger=logger) |
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
|
|
if 'pos_embed' in state_dict.keys(): |
|
if self.pos_embed.shape != state_dict['pos_embed'].shape: |
|
logger.info(msg=f'Resize the pos_embed shape from \ |
|
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}') |
|
h, w = self.img_size |
|
pos_size = int( |
|
math.sqrt(state_dict['pos_embed'].shape[1] - 1)) |
|
state_dict['pos_embed'] = self.resize_pos_embed( |
|
state_dict['pos_embed'], (h, w), (pos_size, pos_size), |
|
self.patch_size, self.interpolate_mode) |
|
|
|
self.load_state_dict(state_dict, False) |
|
|
|
elif pretrained is None: |
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
for n, m in self.named_modules(): |
|
if isinstance(m, Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
if 'mlp' in n: |
|
normal_init(m.bias, std=1e-6) |
|
else: |
|
constant_init(m.bias, 0) |
|
elif isinstance(m, Conv2d): |
|
kaiming_init(m.weight, mode='fan_in') |
|
if m.bias is not None: |
|
constant_init(m.bias, 0) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): |
|
constant_init(m.bias, 0) |
|
constant_init(m.weight, 1.0) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def _pos_embeding(self, img, patched_img, pos_embed): |
|
"""Positiong embeding method. |
|
|
|
Resize the pos_embed, if the input image size doesn't match |
|
the training size. |
|
Args: |
|
img (torch.Tensor): The inference image tensor, the shape |
|
must be [B, C, H, W]. |
|
patched_img (torch.Tensor): The patched image, it should be |
|
shape of [B, L1, C]. |
|
pos_embed (torch.Tensor): The pos_embed weighs, it should be |
|
shape of [B, L2, c]. |
|
Return: |
|
torch.Tensor: The pos encoded image feature. |
|
""" |
|
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \ |
|
'the shapes of patched_img and pos_embed must be [B, L, C]' |
|
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1] |
|
if x_len != pos_len: |
|
if pos_len == (self.img_size[0] // self.patch_size) * ( |
|
self.img_size[1] // self.patch_size) + 1: |
|
pos_h = self.img_size[0] // self.patch_size |
|
pos_w = self.img_size[1] // self.patch_size |
|
else: |
|
raise ValueError( |
|
'Unexpected shape of pos_embed, got {}.'.format( |
|
pos_embed.shape)) |
|
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], |
|
(pos_h, pos_w), self.patch_size, |
|
self.interpolate_mode) |
|
return self.pos_drop(patched_img + pos_embed) |
|
|
|
@staticmethod |
|
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): |
|
"""Resize pos_embed weights. |
|
|
|
Resize pos_embed using bicubic interpolate method. |
|
Args: |
|
pos_embed (torch.Tensor): pos_embed weights. |
|
input_shpae (tuple): Tuple for (input_h, intput_w). |
|
pos_shape (tuple): Tuple for (pos_h, pos_w). |
|
patch_size (int): Patch size. |
|
Return: |
|
torch.Tensor: The resized pos_embed of shape [B, L_new, C] |
|
""" |
|
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' |
|
input_h, input_w = input_shpae |
|
pos_h, pos_w = pos_shape |
|
cls_token_weight = pos_embed[:, 0] |
|
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] |
|
pos_embed_weight = pos_embed_weight.reshape( |
|
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) |
|
pos_embed_weight = F.interpolate( |
|
pos_embed_weight, |
|
size=[input_h // patch_size, input_w // patch_size], |
|
align_corners=False, |
|
mode=mode) |
|
cls_token_weight = cls_token_weight.unsqueeze(1) |
|
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) |
|
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) |
|
return pos_embed |
|
|
|
def forward(self, inputs): |
|
B = inputs.shape[0] |
|
|
|
x = self.patch_embed(inputs) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self._pos_embeding(inputs, x, self.pos_embed) |
|
|
|
if not self.with_cls_token: |
|
|
|
x = x[:, 1:] |
|
|
|
outs = [] |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if i == len(self.blocks) - 1: |
|
if self.final_norm: |
|
x = self.norm(x) |
|
if i in self.out_indices: |
|
if self.with_cls_token: |
|
|
|
out = x[:, 1:] |
|
else: |
|
out = x |
|
B, _, C = out.shape |
|
out = out.reshape(B, inputs.shape[2] // self.patch_size, |
|
inputs.shape[3] // self.patch_size, |
|
C).permute(0, 3, 1, 2) |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
super(VisionTransformer, self).train(mode) |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, nn.LayerNorm): |
|
m.eval() |
|
|