|
import torch |
|
from transformers import CLIPProcessor, CLIPVisionModel |
|
from modules import devices |
|
import os |
|
from annotator.annotator_path import clip_vision_path |
|
|
|
|
|
remote_model_path = "https://huggingface.co./openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin" |
|
clip_path = clip_vision_path |
|
print(f'ControlNet ClipVision location: {clip_path}') |
|
|
|
clip_proc = None |
|
clip_vision_model = None |
|
|
|
|
|
def apply_clip(img): |
|
global clip_proc, clip_vision_model |
|
|
|
if clip_vision_model is None: |
|
modelpath = os.path.join(clip_path, 'pytorch_model.bin') |
|
if not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=clip_path) |
|
|
|
clip_proc = CLIPProcessor.from_pretrained(clip_path) |
|
clip_vision_model = CLIPVisionModel.from_pretrained(clip_path) |
|
|
|
with torch.no_grad(): |
|
clip_vision_model = clip_vision_model.to(devices.get_device_for("controlnet")) |
|
style_for_clip = clip_proc(images=img, return_tensors="pt")['pixel_values'] |
|
style_feat = clip_vision_model(style_for_clip.to(devices.get_device_for("controlnet")))['last_hidden_state'] |
|
|
|
return style_feat |
|
|
|
|
|
def unload_clip_model(): |
|
global clip_proc, clip_vision_model |
|
if clip_vision_model is not None: |
|
clip_vision_model.cpu() |