|
|
|
import copy |
|
from collections import defaultdict |
|
from itertools import chain |
|
|
|
from torch.nn.utils import clip_grad |
|
|
|
from annotator.uniformer.mmcv.utils import TORCH_VERSION, _BatchNorm, digit_version |
|
from ..dist_utils import allreduce_grads |
|
from ..fp16_utils import LossScaler, wrap_fp16_model |
|
from .hook import HOOKS, Hook |
|
|
|
try: |
|
|
|
|
|
from torch.cuda.amp import GradScaler |
|
except ImportError: |
|
pass |
|
|
|
|
|
@HOOKS.register_module() |
|
class OptimizerHook(Hook): |
|
|
|
def __init__(self, grad_clip=None): |
|
self.grad_clip = grad_clip |
|
|
|
def clip_grads(self, params): |
|
params = list( |
|
filter(lambda p: p.requires_grad and p.grad is not None, params)) |
|
if len(params) > 0: |
|
return clip_grad.clip_grad_norm_(params, **self.grad_clip) |
|
|
|
def after_train_iter(self, runner): |
|
runner.optimizer.zero_grad() |
|
runner.outputs['loss'].backward() |
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(runner.model.parameters()) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update({'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
runner.optimizer.step() |
|
|
|
|
|
@HOOKS.register_module() |
|
class GradientCumulativeOptimizerHook(OptimizerHook): |
|
"""Optimizer Hook implements multi-iters gradient cumulating. |
|
|
|
Args: |
|
cumulative_iters (int, optional): Num of gradient cumulative iters. |
|
The optimizer will step every `cumulative_iters` iters. |
|
Defaults to 1. |
|
|
|
Examples: |
|
>>> # Use cumulative_iters to simulate a large batch size |
|
>>> # It is helpful when the hardware cannot handle a large batch size. |
|
>>> loader = DataLoader(data, batch_size=64) |
|
>>> optim_hook = GradientCumulativeOptimizerHook(cumulative_iters=4) |
|
>>> # almost equals to |
|
>>> loader = DataLoader(data, batch_size=256) |
|
>>> optim_hook = OptimizerHook() |
|
""" |
|
|
|
def __init__(self, cumulative_iters=1, **kwargs): |
|
super(GradientCumulativeOptimizerHook, self).__init__(**kwargs) |
|
|
|
assert isinstance(cumulative_iters, int) and cumulative_iters > 0, \ |
|
f'cumulative_iters only accepts positive int, but got ' \ |
|
f'{type(cumulative_iters)} instead.' |
|
|
|
self.cumulative_iters = cumulative_iters |
|
self.divisible_iters = 0 |
|
self.remainder_iters = 0 |
|
self.initialized = False |
|
|
|
def has_batch_norm(self, module): |
|
if isinstance(module, _BatchNorm): |
|
return True |
|
for m in module.children(): |
|
if self.has_batch_norm(m): |
|
return True |
|
return False |
|
|
|
def _init(self, runner): |
|
if runner.iter % self.cumulative_iters != 0: |
|
runner.logger.warning( |
|
'Resume iter number is not divisible by cumulative_iters in ' |
|
'GradientCumulativeOptimizerHook, which means the gradient of ' |
|
'some iters is lost and the result may be influenced slightly.' |
|
) |
|
|
|
if self.has_batch_norm(runner.model) and self.cumulative_iters > 1: |
|
runner.logger.warning( |
|
'GradientCumulativeOptimizerHook may slightly decrease ' |
|
'performance if the model has BatchNorm layers.') |
|
|
|
residual_iters = runner.max_iters - runner.iter |
|
|
|
self.divisible_iters = ( |
|
residual_iters // self.cumulative_iters * self.cumulative_iters) |
|
self.remainder_iters = residual_iters - self.divisible_iters |
|
|
|
self.initialized = True |
|
|
|
def after_train_iter(self, runner): |
|
if not self.initialized: |
|
self._init(runner) |
|
|
|
if runner.iter < self.divisible_iters: |
|
loss_factor = self.cumulative_iters |
|
else: |
|
loss_factor = self.remainder_iters |
|
loss = runner.outputs['loss'] |
|
loss = loss / loss_factor |
|
loss.backward() |
|
|
|
if (self.every_n_iters(runner, self.cumulative_iters) |
|
or self.is_last_iter(runner)): |
|
|
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(runner.model.parameters()) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update({'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
runner.optimizer.step() |
|
runner.optimizer.zero_grad() |
|
|
|
|
|
if (TORCH_VERSION != 'parrots' |
|
and digit_version(TORCH_VERSION) >= digit_version('1.6.0')): |
|
|
|
@HOOKS.register_module() |
|
class Fp16OptimizerHook(OptimizerHook): |
|
"""FP16 optimizer hook (using PyTorch's implementation). |
|
|
|
If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend, |
|
to take care of the optimization procedure. |
|
|
|
Args: |
|
loss_scale (float | str | dict): Scale factor configuration. |
|
If loss_scale is a float, static loss scaling will be used with |
|
the specified scale. If loss_scale is a string, it must be |
|
'dynamic', then dynamic loss scaling will be used. |
|
It can also be a dict containing arguments of GradScalar. |
|
Defaults to 512. For Pytorch >= 1.6, mmcv uses official |
|
implementation of GradScaler. If you use a dict version of |
|
loss_scale to create GradScaler, please refer to: |
|
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler |
|
for the parameters. |
|
|
|
Examples: |
|
>>> loss_scale = dict( |
|
... init_scale=65536.0, |
|
... growth_factor=2.0, |
|
... backoff_factor=0.5, |
|
... growth_interval=2000 |
|
... ) |
|
>>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale) |
|
""" |
|
|
|
def __init__(self, |
|
grad_clip=None, |
|
coalesce=True, |
|
bucket_size_mb=-1, |
|
loss_scale=512., |
|
distributed=True): |
|
self.grad_clip = grad_clip |
|
self.coalesce = coalesce |
|
self.bucket_size_mb = bucket_size_mb |
|
self.distributed = distributed |
|
self._scale_update_param = None |
|
if loss_scale == 'dynamic': |
|
self.loss_scaler = GradScaler() |
|
elif isinstance(loss_scale, float): |
|
self._scale_update_param = loss_scale |
|
self.loss_scaler = GradScaler(init_scale=loss_scale) |
|
elif isinstance(loss_scale, dict): |
|
self.loss_scaler = GradScaler(**loss_scale) |
|
else: |
|
raise ValueError('loss_scale must be of type float, dict, or ' |
|
f'"dynamic", got {loss_scale}') |
|
|
|
def before_run(self, runner): |
|
"""Preparing steps before Mixed Precision Training.""" |
|
|
|
wrap_fp16_model(runner.model) |
|
|
|
if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']: |
|
scaler_state_dict = runner.meta['fp16']['loss_scaler'] |
|
self.loss_scaler.load_state_dict(scaler_state_dict) |
|
|
|
def copy_grads_to_fp32(self, fp16_net, fp32_weights): |
|
"""Copy gradients from fp16 model to fp32 weight copy.""" |
|
for fp32_param, fp16_param in zip(fp32_weights, |
|
fp16_net.parameters()): |
|
if fp16_param.grad is not None: |
|
if fp32_param.grad is None: |
|
fp32_param.grad = fp32_param.data.new( |
|
fp32_param.size()) |
|
fp32_param.grad.copy_(fp16_param.grad) |
|
|
|
def copy_params_to_fp16(self, fp16_net, fp32_weights): |
|
"""Copy updated params from fp32 weight copy to fp16 model.""" |
|
for fp16_param, fp32_param in zip(fp16_net.parameters(), |
|
fp32_weights): |
|
fp16_param.data.copy_(fp32_param.data) |
|
|
|
def after_train_iter(self, runner): |
|
"""Backward optimization steps for Mixed Precision Training. For |
|
dynamic loss scaling, please refer to |
|
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler. |
|
|
|
1. Scale the loss by a scale factor. |
|
2. Backward the loss to obtain the gradients. |
|
3. Unscale the optimizer’s gradient tensors. |
|
4. Call optimizer.step() and update scale factor. |
|
5. Save loss_scaler state_dict for resume purpose. |
|
""" |
|
|
|
runner.model.zero_grad() |
|
runner.optimizer.zero_grad() |
|
|
|
self.loss_scaler.scale(runner.outputs['loss']).backward() |
|
self.loss_scaler.unscale_(runner.optimizer) |
|
|
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(runner.model.parameters()) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update({'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
|
|
self.loss_scaler.step(runner.optimizer) |
|
self.loss_scaler.update(self._scale_update_param) |
|
|
|
|
|
runner.meta.setdefault( |
|
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict() |
|
|
|
@HOOKS.register_module() |
|
class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook, |
|
Fp16OptimizerHook): |
|
"""Fp16 optimizer Hook (using PyTorch's implementation) implements |
|
multi-iters gradient cumulating. |
|
|
|
If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend, |
|
to take care of the optimization procedure. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(GradientCumulativeFp16OptimizerHook, |
|
self).__init__(*args, **kwargs) |
|
|
|
def after_train_iter(self, runner): |
|
if not self.initialized: |
|
self._init(runner) |
|
|
|
if runner.iter < self.divisible_iters: |
|
loss_factor = self.cumulative_iters |
|
else: |
|
loss_factor = self.remainder_iters |
|
loss = runner.outputs['loss'] |
|
loss = loss / loss_factor |
|
|
|
self.loss_scaler.scale(loss).backward() |
|
|
|
if (self.every_n_iters(runner, self.cumulative_iters) |
|
or self.is_last_iter(runner)): |
|
|
|
|
|
self.loss_scaler.unscale_(runner.optimizer) |
|
|
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(runner.model.parameters()) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update( |
|
{'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
|
|
|
|
self.loss_scaler.step(runner.optimizer) |
|
self.loss_scaler.update(self._scale_update_param) |
|
|
|
|
|
runner.meta.setdefault( |
|
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict() |
|
|
|
|
|
runner.model.zero_grad() |
|
runner.optimizer.zero_grad() |
|
|
|
else: |
|
|
|
@HOOKS.register_module() |
|
class Fp16OptimizerHook(OptimizerHook): |
|
"""FP16 optimizer hook (mmcv's implementation). |
|
|
|
The steps of fp16 optimizer is as follows. |
|
1. Scale the loss value. |
|
2. BP in the fp16 model. |
|
2. Copy gradients from fp16 model to fp32 weights. |
|
3. Update fp32 weights. |
|
4. Copy updated parameters from fp32 weights to fp16 model. |
|
|
|
Refer to https://arxiv.org/abs/1710.03740 for more details. |
|
|
|
Args: |
|
loss_scale (float | str | dict): Scale factor configuration. |
|
If loss_scale is a float, static loss scaling will be used with |
|
the specified scale. If loss_scale is a string, it must be |
|
'dynamic', then dynamic loss scaling will be used. |
|
It can also be a dict containing arguments of LossScaler. |
|
Defaults to 512. |
|
""" |
|
|
|
def __init__(self, |
|
grad_clip=None, |
|
coalesce=True, |
|
bucket_size_mb=-1, |
|
loss_scale=512., |
|
distributed=True): |
|
self.grad_clip = grad_clip |
|
self.coalesce = coalesce |
|
self.bucket_size_mb = bucket_size_mb |
|
self.distributed = distributed |
|
if loss_scale == 'dynamic': |
|
self.loss_scaler = LossScaler(mode='dynamic') |
|
elif isinstance(loss_scale, float): |
|
self.loss_scaler = LossScaler( |
|
init_scale=loss_scale, mode='static') |
|
elif isinstance(loss_scale, dict): |
|
self.loss_scaler = LossScaler(**loss_scale) |
|
else: |
|
raise ValueError('loss_scale must be of type float, dict, or ' |
|
f'"dynamic", got {loss_scale}') |
|
|
|
def before_run(self, runner): |
|
"""Preparing steps before Mixed Precision Training. |
|
|
|
1. Make a master copy of fp32 weights for optimization. |
|
2. Convert the main model from fp32 to fp16. |
|
""" |
|
|
|
old_groups = runner.optimizer.param_groups |
|
runner.optimizer.param_groups = copy.deepcopy( |
|
runner.optimizer.param_groups) |
|
state = defaultdict(dict) |
|
p_map = { |
|
old_p: p |
|
for old_p, p in zip( |
|
chain(*(g['params'] for g in old_groups)), |
|
chain(*(g['params'] |
|
for g in runner.optimizer.param_groups))) |
|
} |
|
for k, v in runner.optimizer.state.items(): |
|
state[p_map[k]] = v |
|
runner.optimizer.state = state |
|
|
|
wrap_fp16_model(runner.model) |
|
|
|
if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']: |
|
scaler_state_dict = runner.meta['fp16']['loss_scaler'] |
|
self.loss_scaler.load_state_dict(scaler_state_dict) |
|
|
|
def copy_grads_to_fp32(self, fp16_net, fp32_weights): |
|
"""Copy gradients from fp16 model to fp32 weight copy.""" |
|
for fp32_param, fp16_param in zip(fp32_weights, |
|
fp16_net.parameters()): |
|
if fp16_param.grad is not None: |
|
if fp32_param.grad is None: |
|
fp32_param.grad = fp32_param.data.new( |
|
fp32_param.size()) |
|
fp32_param.grad.copy_(fp16_param.grad) |
|
|
|
def copy_params_to_fp16(self, fp16_net, fp32_weights): |
|
"""Copy updated params from fp32 weight copy to fp16 model.""" |
|
for fp16_param, fp32_param in zip(fp16_net.parameters(), |
|
fp32_weights): |
|
fp16_param.data.copy_(fp32_param.data) |
|
|
|
def after_train_iter(self, runner): |
|
"""Backward optimization steps for Mixed Precision Training. For |
|
dynamic loss scaling, please refer `loss_scalar.py` |
|
|
|
1. Scale the loss by a scale factor. |
|
2. Backward the loss to obtain the gradients (fp16). |
|
3. Copy gradients from the model to the fp32 weight copy. |
|
4. Scale the gradients back and update the fp32 weight copy. |
|
5. Copy back the params from fp32 weight copy to the fp16 model. |
|
6. Save loss_scaler state_dict for resume purpose. |
|
""" |
|
|
|
runner.model.zero_grad() |
|
runner.optimizer.zero_grad() |
|
|
|
scaled_loss = runner.outputs['loss'] * self.loss_scaler.loss_scale |
|
scaled_loss.backward() |
|
|
|
|
|
fp32_weights = [] |
|
for param_group in runner.optimizer.param_groups: |
|
fp32_weights += param_group['params'] |
|
self.copy_grads_to_fp32(runner.model, fp32_weights) |
|
|
|
if self.distributed: |
|
allreduce_grads(fp32_weights, self.coalesce, |
|
self.bucket_size_mb) |
|
|
|
has_overflow = self.loss_scaler.has_overflow(fp32_weights) |
|
|
|
if not has_overflow: |
|
|
|
for param in fp32_weights: |
|
if param.grad is not None: |
|
param.grad.div_(self.loss_scaler.loss_scale) |
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(fp32_weights) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update( |
|
{'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
|
|
runner.optimizer.step() |
|
|
|
self.copy_params_to_fp16(runner.model, fp32_weights) |
|
self.loss_scaler.update_scale(has_overflow) |
|
if has_overflow: |
|
runner.logger.warning('Check overflow, downscale loss scale ' |
|
f'to {self.loss_scaler.cur_scale}') |
|
|
|
|
|
runner.meta.setdefault( |
|
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict() |
|
|
|
@HOOKS.register_module() |
|
class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook, |
|
Fp16OptimizerHook): |
|
"""Fp16 optimizer Hook (using mmcv implementation) implements multi- |
|
iters gradient cumulating.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(GradientCumulativeFp16OptimizerHook, |
|
self).__init__(*args, **kwargs) |
|
|
|
def after_train_iter(self, runner): |
|
if not self.initialized: |
|
self._init(runner) |
|
|
|
if runner.iter < self.divisible_iters: |
|
loss_factor = self.cumulative_iters |
|
else: |
|
loss_factor = self.remainder_iters |
|
|
|
loss = runner.outputs['loss'] |
|
loss = loss / loss_factor |
|
|
|
|
|
scaled_loss = loss * self.loss_scaler.loss_scale |
|
scaled_loss.backward() |
|
|
|
if (self.every_n_iters(runner, self.cumulative_iters) |
|
or self.is_last_iter(runner)): |
|
|
|
|
|
fp32_weights = [] |
|
for param_group in runner.optimizer.param_groups: |
|
fp32_weights += param_group['params'] |
|
self.copy_grads_to_fp32(runner.model, fp32_weights) |
|
|
|
if self.distributed: |
|
allreduce_grads(fp32_weights, self.coalesce, |
|
self.bucket_size_mb) |
|
|
|
has_overflow = self.loss_scaler.has_overflow(fp32_weights) |
|
|
|
if not has_overflow: |
|
|
|
for param in fp32_weights: |
|
if param.grad is not None: |
|
param.grad.div_(self.loss_scaler.loss_scale) |
|
if self.grad_clip is not None: |
|
grad_norm = self.clip_grads(fp32_weights) |
|
if grad_norm is not None: |
|
|
|
runner.log_buffer.update( |
|
{'grad_norm': float(grad_norm)}, |
|
runner.outputs['num_samples']) |
|
|
|
runner.optimizer.step() |
|
|
|
self.copy_params_to_fp16(runner.model, fp32_weights) |
|
else: |
|
runner.logger.warning( |
|
'Check overflow, downscale loss scale ' |
|
f'to {self.loss_scaler.cur_scale}') |
|
|
|
self.loss_scaler.update_scale(has_overflow) |
|
|
|
|
|
runner.meta.setdefault( |
|
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict() |
|
|
|
|
|
runner.model.zero_grad() |
|
runner.optimizer.zero_grad() |
|
|