|
|
|
import os.path as osp |
|
import warnings |
|
from math import inf |
|
|
|
import torch.distributed as dist |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
from torch.utils.data import DataLoader |
|
|
|
from annotator.uniformer.mmcv.fileio import FileClient |
|
from annotator.uniformer.mmcv.utils import is_seq_of |
|
from .hook import Hook |
|
from .logger import LoggerHook |
|
|
|
|
|
class EvalHook(Hook): |
|
"""Non-Distributed evaluation hook. |
|
|
|
This hook will regularly perform evaluation in a given interval when |
|
performing in non-distributed environment. |
|
|
|
Args: |
|
dataloader (DataLoader): A PyTorch dataloader, whose dataset has |
|
implemented ``evaluate`` function. |
|
start (int | None, optional): Evaluation starting epoch. It enables |
|
evaluation before the training starts if ``start`` <= the resuming |
|
epoch. If None, whether to evaluate is merely decided by |
|
``interval``. Default: None. |
|
interval (int): Evaluation interval. Default: 1. |
|
by_epoch (bool): Determine perform evaluation by epoch or by iteration. |
|
If set to True, it will perform by epoch. Otherwise, by iteration. |
|
Default: True. |
|
save_best (str, optional): If a metric is specified, it would measure |
|
the best checkpoint during evaluation. The information about best |
|
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep |
|
best score value and best checkpoint path, which will be also |
|
loaded when resume checkpoint. Options are the evaluation metrics |
|
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox |
|
detection and instance segmentation. ``AR@100`` for proposal |
|
recall. If ``save_best`` is ``auto``, the first key of the returned |
|
``OrderedDict`` result will be used. Default: None. |
|
rule (str | None, optional): Comparison rule for best score. If set to |
|
None, it will infer a reasonable rule. Keys such as 'acc', 'top' |
|
.etc will be inferred by 'greater' rule. Keys contain 'loss' will |
|
be inferred by 'less' rule. Options are 'greater', 'less', None. |
|
Default: None. |
|
test_fn (callable, optional): test a model with samples from a |
|
dataloader, and return the test results. If ``None``, the default |
|
test function ``mmcv.engine.single_gpu_test`` will be used. |
|
(default: ``None``) |
|
greater_keys (List[str] | None, optional): Metric keys that will be |
|
inferred by 'greater' comparison rule. If ``None``, |
|
_default_greater_keys will be used. (default: ``None``) |
|
less_keys (List[str] | None, optional): Metric keys that will be |
|
inferred by 'less' comparison rule. If ``None``, _default_less_keys |
|
will be used. (default: ``None``) |
|
out_dir (str, optional): The root directory to save checkpoints. If not |
|
specified, `runner.work_dir` will be used by default. If specified, |
|
the `out_dir` will be the concatenation of `out_dir` and the last |
|
level directory of `runner.work_dir`. |
|
`New in version 1.3.16.` |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. Default: None. |
|
`New in version 1.3.16.` |
|
**eval_kwargs: Evaluation arguments fed into the evaluate function of |
|
the dataset. |
|
|
|
Notes: |
|
If new arguments are added for EvalHook, tools/test.py, |
|
tools/eval_metric.py may be affected. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y} |
|
init_value_map = {'greater': -inf, 'less': inf} |
|
_default_greater_keys = [ |
|
'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU', |
|
'mAcc', 'aAcc' |
|
] |
|
_default_less_keys = ['loss'] |
|
|
|
def __init__(self, |
|
dataloader, |
|
start=None, |
|
interval=1, |
|
by_epoch=True, |
|
save_best=None, |
|
rule=None, |
|
test_fn=None, |
|
greater_keys=None, |
|
less_keys=None, |
|
out_dir=None, |
|
file_client_args=None, |
|
**eval_kwargs): |
|
if not isinstance(dataloader, DataLoader): |
|
raise TypeError(f'dataloader must be a pytorch DataLoader, ' |
|
f'but got {type(dataloader)}') |
|
|
|
if interval <= 0: |
|
raise ValueError(f'interval must be a positive number, ' |
|
f'but got {interval}') |
|
|
|
assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean' |
|
|
|
if start is not None and start < 0: |
|
raise ValueError(f'The evaluation start epoch {start} is smaller ' |
|
f'than 0') |
|
|
|
self.dataloader = dataloader |
|
self.interval = interval |
|
self.start = start |
|
self.by_epoch = by_epoch |
|
|
|
assert isinstance(save_best, str) or save_best is None, \ |
|
'""save_best"" should be a str or None ' \ |
|
f'rather than {type(save_best)}' |
|
self.save_best = save_best |
|
self.eval_kwargs = eval_kwargs |
|
self.initial_flag = True |
|
|
|
if test_fn is None: |
|
from annotator.uniformer.mmcv.engine import single_gpu_test |
|
self.test_fn = single_gpu_test |
|
else: |
|
self.test_fn = test_fn |
|
|
|
if greater_keys is None: |
|
self.greater_keys = self._default_greater_keys |
|
else: |
|
if not isinstance(greater_keys, (list, tuple)): |
|
greater_keys = (greater_keys, ) |
|
assert is_seq_of(greater_keys, str) |
|
self.greater_keys = greater_keys |
|
|
|
if less_keys is None: |
|
self.less_keys = self._default_less_keys |
|
else: |
|
if not isinstance(less_keys, (list, tuple)): |
|
less_keys = (less_keys, ) |
|
assert is_seq_of(less_keys, str) |
|
self.less_keys = less_keys |
|
|
|
if self.save_best is not None: |
|
self.best_ckpt_path = None |
|
self._init_rule(rule, self.save_best) |
|
|
|
self.out_dir = out_dir |
|
self.file_client_args = file_client_args |
|
|
|
def _init_rule(self, rule, key_indicator): |
|
"""Initialize rule, key_indicator, comparison_func, and best score. |
|
|
|
Here is the rule to determine which rule is used for key indicator |
|
when the rule is not specific (note that the key indicator matching |
|
is case-insensitive): |
|
1. If the key indicator is in ``self.greater_keys``, the rule will be |
|
specified as 'greater'. |
|
2. Or if the key indicator is in ``self.less_keys``, the rule will be |
|
specified as 'less'. |
|
3. Or if the key indicator is equal to the substring in any one item |
|
in ``self.greater_keys``, the rule will be specified as 'greater'. |
|
4. Or if the key indicator is equal to the substring in any one item |
|
in ``self.less_keys``, the rule will be specified as 'less'. |
|
|
|
Args: |
|
rule (str | None): Comparison rule for best score. |
|
key_indicator (str | None): Key indicator to determine the |
|
comparison rule. |
|
""" |
|
if rule not in self.rule_map and rule is not None: |
|
raise KeyError(f'rule must be greater, less or None, ' |
|
f'but got {rule}.') |
|
|
|
if rule is None: |
|
if key_indicator != 'auto': |
|
|
|
|
|
key_indicator_lc = key_indicator.lower() |
|
greater_keys = [key.lower() for key in self.greater_keys] |
|
less_keys = [key.lower() for key in self.less_keys] |
|
|
|
if key_indicator_lc in greater_keys: |
|
rule = 'greater' |
|
elif key_indicator_lc in less_keys: |
|
rule = 'less' |
|
elif any(key in key_indicator_lc for key in greater_keys): |
|
rule = 'greater' |
|
elif any(key in key_indicator_lc for key in less_keys): |
|
rule = 'less' |
|
else: |
|
raise ValueError(f'Cannot infer the rule for key ' |
|
f'{key_indicator}, thus a specific rule ' |
|
f'must be specified.') |
|
self.rule = rule |
|
self.key_indicator = key_indicator |
|
if self.rule is not None: |
|
self.compare_func = self.rule_map[self.rule] |
|
|
|
def before_run(self, runner): |
|
if not self.out_dir: |
|
self.out_dir = runner.work_dir |
|
|
|
self.file_client = FileClient.infer_client(self.file_client_args, |
|
self.out_dir) |
|
|
|
|
|
|
|
|
|
|
|
if self.out_dir != runner.work_dir: |
|
basename = osp.basename(runner.work_dir.rstrip(osp.sep)) |
|
self.out_dir = self.file_client.join_path(self.out_dir, basename) |
|
runner.logger.info( |
|
(f'The best checkpoint will be saved to {self.out_dir} by ' |
|
f'{self.file_client.name}')) |
|
|
|
if self.save_best is not None: |
|
if runner.meta is None: |
|
warnings.warn('runner.meta is None. Creating an empty one.') |
|
runner.meta = dict() |
|
runner.meta.setdefault('hook_msgs', dict()) |
|
self.best_ckpt_path = runner.meta['hook_msgs'].get( |
|
'best_ckpt', None) |
|
|
|
def before_train_iter(self, runner): |
|
"""Evaluate the model only at the start of training by iteration.""" |
|
if self.by_epoch or not self.initial_flag: |
|
return |
|
if self.start is not None and runner.iter >= self.start: |
|
self.after_train_iter(runner) |
|
self.initial_flag = False |
|
|
|
def before_train_epoch(self, runner): |
|
"""Evaluate the model only at the start of training by epoch.""" |
|
if not (self.by_epoch and self.initial_flag): |
|
return |
|
if self.start is not None and runner.epoch >= self.start: |
|
self.after_train_epoch(runner) |
|
self.initial_flag = False |
|
|
|
def after_train_iter(self, runner): |
|
"""Called after every training iter to evaluate the results.""" |
|
if not self.by_epoch and self._should_evaluate(runner): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for hook in runner._hooks: |
|
if isinstance(hook, LoggerHook): |
|
hook.after_train_iter(runner) |
|
runner.log_buffer.clear() |
|
|
|
self._do_evaluate(runner) |
|
|
|
def after_train_epoch(self, runner): |
|
"""Called after every training epoch to evaluate the results.""" |
|
if self.by_epoch and self._should_evaluate(runner): |
|
self._do_evaluate(runner) |
|
|
|
def _do_evaluate(self, runner): |
|
"""perform evaluation and save ckpt.""" |
|
results = self.test_fn(runner.model, self.dataloader) |
|
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) |
|
key_score = self.evaluate(runner, results) |
|
|
|
|
|
if self.save_best and key_score: |
|
self._save_ckpt(runner, key_score) |
|
|
|
def _should_evaluate(self, runner): |
|
"""Judge whether to perform evaluation. |
|
|
|
Here is the rule to judge whether to perform evaluation: |
|
1. It will not perform evaluation during the epoch/iteration interval, |
|
which is determined by ``self.interval``. |
|
2. It will not perform evaluation if the start time is larger than |
|
current time. |
|
3. It will not perform evaluation when current time is larger than |
|
the start time but during epoch/iteration interval. |
|
|
|
Returns: |
|
bool: The flag indicating whether to perform evaluation. |
|
""" |
|
if self.by_epoch: |
|
current = runner.epoch |
|
check_time = self.every_n_epochs |
|
else: |
|
current = runner.iter |
|
check_time = self.every_n_iters |
|
|
|
if self.start is None: |
|
if not check_time(runner, self.interval): |
|
|
|
return False |
|
elif (current + 1) < self.start: |
|
|
|
return False |
|
else: |
|
|
|
|
|
if (current + 1 - self.start) % self.interval: |
|
return False |
|
return True |
|
|
|
def _save_ckpt(self, runner, key_score): |
|
"""Save the best checkpoint. |
|
|
|
It will compare the score according to the compare function, write |
|
related information (best score, best checkpoint path) and save the |
|
best checkpoint into ``work_dir``. |
|
""" |
|
if self.by_epoch: |
|
current = f'epoch_{runner.epoch + 1}' |
|
cur_type, cur_time = 'epoch', runner.epoch + 1 |
|
else: |
|
current = f'iter_{runner.iter + 1}' |
|
cur_type, cur_time = 'iter', runner.iter + 1 |
|
|
|
best_score = runner.meta['hook_msgs'].get( |
|
'best_score', self.init_value_map[self.rule]) |
|
if self.compare_func(key_score, best_score): |
|
best_score = key_score |
|
runner.meta['hook_msgs']['best_score'] = best_score |
|
|
|
if self.best_ckpt_path and self.file_client.isfile( |
|
self.best_ckpt_path): |
|
self.file_client.remove(self.best_ckpt_path) |
|
runner.logger.info( |
|
(f'The previous best checkpoint {self.best_ckpt_path} was ' |
|
'removed')) |
|
|
|
best_ckpt_name = f'best_{self.key_indicator}_{current}.pth' |
|
self.best_ckpt_path = self.file_client.join_path( |
|
self.out_dir, best_ckpt_name) |
|
runner.meta['hook_msgs']['best_ckpt'] = self.best_ckpt_path |
|
|
|
runner.save_checkpoint( |
|
self.out_dir, best_ckpt_name, create_symlink=False) |
|
runner.logger.info( |
|
f'Now best checkpoint is saved as {best_ckpt_name}.') |
|
runner.logger.info( |
|
f'Best {self.key_indicator} is {best_score:0.4f} ' |
|
f'at {cur_time} {cur_type}.') |
|
|
|
def evaluate(self, runner, results): |
|
"""Evaluate the results. |
|
|
|
Args: |
|
runner (:obj:`mmcv.Runner`): The underlined training runner. |
|
results (list): Output results. |
|
""" |
|
eval_res = self.dataloader.dataset.evaluate( |
|
results, logger=runner.logger, **self.eval_kwargs) |
|
|
|
for name, val in eval_res.items(): |
|
runner.log_buffer.output[name] = val |
|
runner.log_buffer.ready = True |
|
|
|
if self.save_best is not None: |
|
|
|
|
|
|
|
|
|
if not eval_res: |
|
warnings.warn( |
|
'Since `eval_res` is an empty dict, the behavior to save ' |
|
'the best checkpoint will be skipped in this evaluation.') |
|
return None |
|
|
|
if self.key_indicator == 'auto': |
|
|
|
self._init_rule(self.rule, list(eval_res.keys())[0]) |
|
return eval_res[self.key_indicator] |
|
|
|
return None |
|
|
|
|
|
class DistEvalHook(EvalHook): |
|
"""Distributed evaluation hook. |
|
|
|
This hook will regularly perform evaluation in a given interval when |
|
performing in distributed environment. |
|
|
|
Args: |
|
dataloader (DataLoader): A PyTorch dataloader, whose dataset has |
|
implemented ``evaluate`` function. |
|
start (int | None, optional): Evaluation starting epoch. It enables |
|
evaluation before the training starts if ``start`` <= the resuming |
|
epoch. If None, whether to evaluate is merely decided by |
|
``interval``. Default: None. |
|
interval (int): Evaluation interval. Default: 1. |
|
by_epoch (bool): Determine perform evaluation by epoch or by iteration. |
|
If set to True, it will perform by epoch. Otherwise, by iteration. |
|
default: True. |
|
save_best (str, optional): If a metric is specified, it would measure |
|
the best checkpoint during evaluation. The information about best |
|
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep |
|
best score value and best checkpoint path, which will be also |
|
loaded when resume checkpoint. Options are the evaluation metrics |
|
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox |
|
detection and instance segmentation. ``AR@100`` for proposal |
|
recall. If ``save_best`` is ``auto``, the first key of the returned |
|
``OrderedDict`` result will be used. Default: None. |
|
rule (str | None, optional): Comparison rule for best score. If set to |
|
None, it will infer a reasonable rule. Keys such as 'acc', 'top' |
|
.etc will be inferred by 'greater' rule. Keys contain 'loss' will |
|
be inferred by 'less' rule. Options are 'greater', 'less', None. |
|
Default: None. |
|
test_fn (callable, optional): test a model with samples from a |
|
dataloader in a multi-gpu manner, and return the test results. If |
|
``None``, the default test function ``mmcv.engine.multi_gpu_test`` |
|
will be used. (default: ``None``) |
|
tmpdir (str | None): Temporary directory to save the results of all |
|
processes. Default: None. |
|
gpu_collect (bool): Whether to use gpu or cpu to collect results. |
|
Default: False. |
|
broadcast_bn_buffer (bool): Whether to broadcast the |
|
buffer(running_mean and running_var) of rank 0 to other rank |
|
before evaluation. Default: True. |
|
out_dir (str, optional): The root directory to save checkpoints. If not |
|
specified, `runner.work_dir` will be used by default. If specified, |
|
the `out_dir` will be the concatenation of `out_dir` and the last |
|
level directory of `runner.work_dir`. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. Default: None. |
|
**eval_kwargs: Evaluation arguments fed into the evaluate function of |
|
the dataset. |
|
""" |
|
|
|
def __init__(self, |
|
dataloader, |
|
start=None, |
|
interval=1, |
|
by_epoch=True, |
|
save_best=None, |
|
rule=None, |
|
test_fn=None, |
|
greater_keys=None, |
|
less_keys=None, |
|
broadcast_bn_buffer=True, |
|
tmpdir=None, |
|
gpu_collect=False, |
|
out_dir=None, |
|
file_client_args=None, |
|
**eval_kwargs): |
|
|
|
if test_fn is None: |
|
from annotator.uniformer.mmcv.engine import multi_gpu_test |
|
test_fn = multi_gpu_test |
|
|
|
super().__init__( |
|
dataloader, |
|
start=start, |
|
interval=interval, |
|
by_epoch=by_epoch, |
|
save_best=save_best, |
|
rule=rule, |
|
test_fn=test_fn, |
|
greater_keys=greater_keys, |
|
less_keys=less_keys, |
|
out_dir=out_dir, |
|
file_client_args=file_client_args, |
|
**eval_kwargs) |
|
|
|
self.broadcast_bn_buffer = broadcast_bn_buffer |
|
self.tmpdir = tmpdir |
|
self.gpu_collect = gpu_collect |
|
|
|
def _do_evaluate(self, runner): |
|
"""perform evaluation and save ckpt.""" |
|
|
|
|
|
|
|
|
|
|
|
if self.broadcast_bn_buffer: |
|
model = runner.model |
|
for name, module in model.named_modules(): |
|
if isinstance(module, |
|
_BatchNorm) and module.track_running_stats: |
|
dist.broadcast(module.running_var, 0) |
|
dist.broadcast(module.running_mean, 0) |
|
|
|
tmpdir = self.tmpdir |
|
if tmpdir is None: |
|
tmpdir = osp.join(runner.work_dir, '.eval_hook') |
|
|
|
results = self.test_fn( |
|
runner.model, |
|
self.dataloader, |
|
tmpdir=tmpdir, |
|
gpu_collect=self.gpu_collect) |
|
if runner.rank == 0: |
|
print('\n') |
|
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) |
|
key_score = self.evaluate(runner, results) |
|
|
|
|
|
if self.save_best and key_score: |
|
self._save_ckpt(runner, key_score) |
|
|