|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..utils import xavier_init |
|
from .registry import UPSAMPLE_LAYERS |
|
|
|
UPSAMPLE_LAYERS.register_module('nearest', module=nn.Upsample) |
|
UPSAMPLE_LAYERS.register_module('bilinear', module=nn.Upsample) |
|
|
|
|
|
@UPSAMPLE_LAYERS.register_module(name='pixel_shuffle') |
|
class PixelShufflePack(nn.Module): |
|
"""Pixel Shuffle upsample layer. |
|
|
|
This module packs `F.pixel_shuffle()` and a nn.Conv2d module together to |
|
achieve a simple upsampling with pixel shuffle. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
scale_factor (int): Upsample ratio. |
|
upsample_kernel (int): Kernel size of the conv layer to expand the |
|
channels. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, scale_factor, |
|
upsample_kernel): |
|
super(PixelShufflePack, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.scale_factor = scale_factor |
|
self.upsample_kernel = upsample_kernel |
|
self.upsample_conv = nn.Conv2d( |
|
self.in_channels, |
|
self.out_channels * scale_factor * scale_factor, |
|
self.upsample_kernel, |
|
padding=(self.upsample_kernel - 1) // 2) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
xavier_init(self.upsample_conv, distribution='uniform') |
|
|
|
def forward(self, x): |
|
x = self.upsample_conv(x) |
|
x = F.pixel_shuffle(x, self.scale_factor) |
|
return x |
|
|
|
|
|
def build_upsample_layer(cfg, *args, **kwargs): |
|
"""Build upsample layer. |
|
|
|
Args: |
|
cfg (dict): The upsample layer config, which should contain: |
|
|
|
- type (str): Layer type. |
|
- scale_factor (int): Upsample ratio, which is not applicable to |
|
deconv. |
|
- layer args: Args needed to instantiate a upsample layer. |
|
args (argument list): Arguments passed to the ``__init__`` |
|
method of the corresponding conv layer. |
|
kwargs (keyword arguments): Keyword arguments passed to the |
|
``__init__`` method of the corresponding conv layer. |
|
|
|
Returns: |
|
nn.Module: Created upsample layer. |
|
""" |
|
if not isinstance(cfg, dict): |
|
raise TypeError(f'cfg must be a dict, but got {type(cfg)}') |
|
if 'type' not in cfg: |
|
raise KeyError( |
|
f'the cfg dict must contain the key "type", but got {cfg}') |
|
cfg_ = cfg.copy() |
|
|
|
layer_type = cfg_.pop('type') |
|
if layer_type not in UPSAMPLE_LAYERS: |
|
raise KeyError(f'Unrecognized upsample type {layer_type}') |
|
else: |
|
upsample = UPSAMPLE_LAYERS.get(layer_type) |
|
|
|
if upsample is nn.Upsample: |
|
cfg_['mode'] = layer_type |
|
layer = upsample(*args, **kwargs, **cfg_) |
|
return layer |
|
|