|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from annotator.uniformer.mmcv.utils import TORCH_VERSION, build_from_cfg, digit_version |
|
from .registry import ACTIVATION_LAYERS |
|
|
|
for module in [ |
|
nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU, |
|
nn.Sigmoid, nn.Tanh |
|
]: |
|
ACTIVATION_LAYERS.register_module(module=module) |
|
|
|
|
|
@ACTIVATION_LAYERS.register_module(name='Clip') |
|
@ACTIVATION_LAYERS.register_module() |
|
class Clamp(nn.Module): |
|
"""Clamp activation layer. |
|
|
|
This activation function is to clamp the feature map value within |
|
:math:`[min, max]`. More details can be found in ``torch.clamp()``. |
|
|
|
Args: |
|
min (Number | optional): Lower-bound of the range to be clamped to. |
|
Default to -1. |
|
max (Number | optional): Upper-bound of the range to be clamped to. |
|
Default to 1. |
|
""" |
|
|
|
def __init__(self, min=-1., max=1.): |
|
super(Clamp, self).__init__() |
|
self.min = min |
|
self.max = max |
|
|
|
def forward(self, x): |
|
"""Forward function. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Clamped tensor. |
|
""" |
|
return torch.clamp(x, min=self.min, max=self.max) |
|
|
|
|
|
class GELU(nn.Module): |
|
r"""Applies the Gaussian Error Linear Units function: |
|
|
|
.. math:: |
|
\text{GELU}(x) = x * \Phi(x) |
|
where :math:`\Phi(x)` is the Cumulative Distribution Function for |
|
Gaussian Distribution. |
|
|
|
Shape: |
|
- Input: :math:`(N, *)` where `*` means, any number of additional |
|
dimensions |
|
- Output: :math:`(N, *)`, same shape as the input |
|
|
|
.. image:: scripts/activation_images/GELU.png |
|
|
|
Examples:: |
|
|
|
>>> m = nn.GELU() |
|
>>> input = torch.randn(2) |
|
>>> output = m(input) |
|
""" |
|
|
|
def forward(self, input): |
|
return F.gelu(input) |
|
|
|
|
|
if (TORCH_VERSION == 'parrots' |
|
or digit_version(TORCH_VERSION) < digit_version('1.4')): |
|
ACTIVATION_LAYERS.register_module(module=GELU) |
|
else: |
|
ACTIVATION_LAYERS.register_module(module=nn.GELU) |
|
|
|
|
|
def build_activation_layer(cfg): |
|
"""Build activation layer. |
|
|
|
Args: |
|
cfg (dict): The activation layer config, which should contain: |
|
- type (str): Layer type. |
|
- layer args: Args needed to instantiate an activation layer. |
|
|
|
Returns: |
|
nn.Module: Created activation layer. |
|
""" |
|
return build_from_cfg(cfg, ACTIVATION_LAYERS) |
|
|