|
|
|
import copy |
|
import itertools |
|
import numpy as np |
|
from typing import Any, Iterator, List, Union |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from torch import device |
|
|
|
from annotator.oneformer.detectron2.layers.roi_align import ROIAlign |
|
from annotator.oneformer.detectron2.utils.memory import retry_if_cuda_oom |
|
|
|
from .boxes import Boxes |
|
|
|
|
|
def polygon_area(x, y): |
|
|
|
|
|
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) |
|
|
|
|
|
def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: |
|
""" |
|
Args: |
|
polygons (list[ndarray]): each array has shape (Nx2,) |
|
height, width (int) |
|
|
|
Returns: |
|
ndarray: a bool mask of shape (height, width) |
|
""" |
|
if len(polygons) == 0: |
|
|
|
return np.zeros((height, width)).astype(bool) |
|
rles = mask_util.frPyObjects(polygons, height, width) |
|
rle = mask_util.merge(rles) |
|
return mask_util.decode(rle).astype(bool) |
|
|
|
|
|
def rasterize_polygons_within_box( |
|
polygons: List[np.ndarray], box: np.ndarray, mask_size: int |
|
) -> torch.Tensor: |
|
""" |
|
Rasterize the polygons into a mask image and |
|
crop the mask content in the given box. |
|
The cropped mask is resized to (mask_size, mask_size). |
|
|
|
This function is used when generating training targets for mask head in Mask R-CNN. |
|
Given original ground-truth masks for an image, new ground-truth mask |
|
training targets in the size of `mask_size x mask_size` |
|
must be provided for each predicted box. This function will be called to |
|
produce such targets. |
|
|
|
Args: |
|
polygons (list[ndarray[float]]): a list of polygons, which represents an instance. |
|
box: 4-element numpy array |
|
mask_size (int): |
|
|
|
Returns: |
|
Tensor: BoolTensor of shape (mask_size, mask_size) |
|
""" |
|
|
|
w, h = box[2] - box[0], box[3] - box[1] |
|
|
|
polygons = copy.deepcopy(polygons) |
|
for p in polygons: |
|
p[0::2] = p[0::2] - box[0] |
|
p[1::2] = p[1::2] - box[1] |
|
|
|
|
|
|
|
ratio_h = mask_size / max(h, 0.1) |
|
ratio_w = mask_size / max(w, 0.1) |
|
|
|
if ratio_h == ratio_w: |
|
for p in polygons: |
|
p *= ratio_h |
|
else: |
|
for p in polygons: |
|
p[0::2] *= ratio_w |
|
p[1::2] *= ratio_h |
|
|
|
|
|
mask = polygons_to_bitmask(polygons, mask_size, mask_size) |
|
mask = torch.from_numpy(mask) |
|
return mask |
|
|
|
|
|
class BitMasks: |
|
""" |
|
This class stores the segmentation masks for all objects in one image, in |
|
the form of bitmaps. |
|
|
|
Attributes: |
|
tensor: bool Tensor of N,H,W, representing N instances in the image. |
|
""" |
|
|
|
def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): |
|
""" |
|
Args: |
|
tensor: bool Tensor of N,H,W, representing N instances in the image. |
|
""" |
|
if isinstance(tensor, torch.Tensor): |
|
tensor = tensor.to(torch.bool) |
|
else: |
|
tensor = torch.as_tensor(tensor, dtype=torch.bool, device=torch.device("cpu")) |
|
assert tensor.dim() == 3, tensor.size() |
|
self.image_size = tensor.shape[1:] |
|
self.tensor = tensor |
|
|
|
@torch.jit.unused |
|
def to(self, *args: Any, **kwargs: Any) -> "BitMasks": |
|
return BitMasks(self.tensor.to(*args, **kwargs)) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.tensor.device |
|
|
|
@torch.jit.unused |
|
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": |
|
""" |
|
Returns: |
|
BitMasks: Create a new :class:`BitMasks` by indexing. |
|
|
|
The following usage are allowed: |
|
|
|
1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. |
|
2. `new_masks = masks[2:10]`: return a slice of masks. |
|
3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor |
|
with `length = len(masks)`. Nonzero elements in the vector will be selected. |
|
|
|
Note that the returned object might share storage with this object, |
|
subject to Pytorch's indexing semantics. |
|
""" |
|
if isinstance(item, int): |
|
return BitMasks(self.tensor[item].unsqueeze(0)) |
|
m = self.tensor[item] |
|
assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( |
|
item, m.shape |
|
) |
|
return BitMasks(m) |
|
|
|
@torch.jit.unused |
|
def __iter__(self) -> torch.Tensor: |
|
yield from self.tensor |
|
|
|
@torch.jit.unused |
|
def __repr__(self) -> str: |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={})".format(len(self.tensor)) |
|
return s |
|
|
|
def __len__(self) -> int: |
|
return self.tensor.shape[0] |
|
|
|
def nonempty(self) -> torch.Tensor: |
|
""" |
|
Find masks that are non-empty. |
|
|
|
Returns: |
|
Tensor: a BoolTensor which represents |
|
whether each mask is empty (False) or non-empty (True). |
|
""" |
|
return self.tensor.flatten(1).any(dim=1) |
|
|
|
@staticmethod |
|
def from_polygon_masks( |
|
polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int |
|
) -> "BitMasks": |
|
""" |
|
Args: |
|
polygon_masks (list[list[ndarray]] or PolygonMasks) |
|
height, width (int) |
|
""" |
|
if isinstance(polygon_masks, PolygonMasks): |
|
polygon_masks = polygon_masks.polygons |
|
masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] |
|
if len(masks): |
|
return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) |
|
else: |
|
return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) |
|
|
|
@staticmethod |
|
def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": |
|
""" |
|
Args: |
|
roi_masks: |
|
height, width (int): |
|
""" |
|
return roi_masks.to_bitmasks(height, width) |
|
|
|
def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: |
|
""" |
|
Crop each bitmask by the given box, and resize results to (mask_size, mask_size). |
|
This can be used to prepare training targets for Mask R-CNN. |
|
It has less reconstruction error compared to rasterization with polygons. |
|
However we observe no difference in accuracy, |
|
but BitMasks requires more memory to store all the masks. |
|
|
|
Args: |
|
boxes (Tensor): Nx4 tensor storing the boxes for each mask |
|
mask_size (int): the size of the rasterized mask. |
|
|
|
Returns: |
|
Tensor: |
|
A bool tensor of shape (N, mask_size, mask_size), where |
|
N is the number of predicted boxes for this image. |
|
""" |
|
assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) |
|
device = self.tensor.device |
|
|
|
batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] |
|
rois = torch.cat([batch_inds, boxes], dim=1) |
|
|
|
bit_masks = self.tensor.to(dtype=torch.float32) |
|
rois = rois.to(device=device) |
|
output = ( |
|
ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) |
|
.forward(bit_masks[:, None, :, :], rois) |
|
.squeeze(1) |
|
) |
|
output = output >= 0.5 |
|
return output |
|
|
|
def get_bounding_boxes(self) -> Boxes: |
|
""" |
|
Returns: |
|
Boxes: tight bounding boxes around bitmasks. |
|
If a mask is empty, it's bounding box will be all zero. |
|
""" |
|
boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) |
|
x_any = torch.any(self.tensor, dim=1) |
|
y_any = torch.any(self.tensor, dim=2) |
|
for idx in range(self.tensor.shape[0]): |
|
x = torch.where(x_any[idx, :])[0] |
|
y = torch.where(y_any[idx, :])[0] |
|
if len(x) > 0 and len(y) > 0: |
|
boxes[idx, :] = torch.as_tensor( |
|
[x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 |
|
) |
|
return Boxes(boxes) |
|
|
|
@staticmethod |
|
def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": |
|
""" |
|
Concatenates a list of BitMasks into a single BitMasks |
|
|
|
Arguments: |
|
bitmasks_list (list[BitMasks]) |
|
|
|
Returns: |
|
BitMasks: the concatenated BitMasks |
|
""" |
|
assert isinstance(bitmasks_list, (list, tuple)) |
|
assert len(bitmasks_list) > 0 |
|
assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) |
|
|
|
cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) |
|
return cat_bitmasks |
|
|
|
|
|
class PolygonMasks: |
|
""" |
|
This class stores the segmentation masks for all objects in one image, in the form of polygons. |
|
|
|
Attributes: |
|
polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. |
|
""" |
|
|
|
def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): |
|
""" |
|
Arguments: |
|
polygons (list[list[np.ndarray]]): The first |
|
level of the list correspond to individual instances, |
|
the second level to all the polygons that compose the |
|
instance, and the third level to the polygon coordinates. |
|
The third level array should have the format of |
|
[x0, y0, x1, y1, ..., xn, yn] (n >= 3). |
|
""" |
|
if not isinstance(polygons, list): |
|
raise ValueError( |
|
"Cannot create PolygonMasks: Expect a list of list of polygons per image. " |
|
"Got '{}' instead.".format(type(polygons)) |
|
) |
|
|
|
def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: |
|
|
|
|
|
|
|
|
|
if isinstance(t, torch.Tensor): |
|
t = t.cpu().numpy() |
|
return np.asarray(t).astype("float64") |
|
|
|
def process_polygons( |
|
polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] |
|
) -> List[np.ndarray]: |
|
if not isinstance(polygons_per_instance, list): |
|
raise ValueError( |
|
"Cannot create polygons: Expect a list of polygons per instance. " |
|
"Got '{}' instead.".format(type(polygons_per_instance)) |
|
) |
|
|
|
polygons_per_instance = [_make_array(p) for p in polygons_per_instance] |
|
for polygon in polygons_per_instance: |
|
if len(polygon) % 2 != 0 or len(polygon) < 6: |
|
raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") |
|
return polygons_per_instance |
|
|
|
self.polygons: List[List[np.ndarray]] = [ |
|
process_polygons(polygons_per_instance) for polygons_per_instance in polygons |
|
] |
|
|
|
def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": |
|
return self |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return torch.device("cpu") |
|
|
|
def get_bounding_boxes(self) -> Boxes: |
|
""" |
|
Returns: |
|
Boxes: tight bounding boxes around polygon masks. |
|
""" |
|
boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) |
|
for idx, polygons_per_instance in enumerate(self.polygons): |
|
minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) |
|
maxxy = torch.zeros(2, dtype=torch.float32) |
|
for polygon in polygons_per_instance: |
|
coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) |
|
minxy = torch.min(minxy, torch.min(coords, dim=0).values) |
|
maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) |
|
boxes[idx, :2] = minxy |
|
boxes[idx, 2:] = maxxy |
|
return Boxes(boxes) |
|
|
|
def nonempty(self) -> torch.Tensor: |
|
""" |
|
Find masks that are non-empty. |
|
|
|
Returns: |
|
Tensor: |
|
a BoolTensor which represents whether each mask is empty (False) or not (True). |
|
""" |
|
keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] |
|
return torch.from_numpy(np.asarray(keep, dtype=bool)) |
|
|
|
def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": |
|
""" |
|
Support indexing over the instances and return a `PolygonMasks` object. |
|
`item` can be: |
|
|
|
1. An integer. It will return an object with only one instance. |
|
2. A slice. It will return an object with the selected instances. |
|
3. A list[int]. It will return an object with the selected instances, |
|
correpsonding to the indices in the list. |
|
4. A vector mask of type BoolTensor, whose length is num_instances. |
|
It will return an object with the instances whose mask is nonzero. |
|
""" |
|
if isinstance(item, int): |
|
selected_polygons = [self.polygons[item]] |
|
elif isinstance(item, slice): |
|
selected_polygons = self.polygons[item] |
|
elif isinstance(item, list): |
|
selected_polygons = [self.polygons[i] for i in item] |
|
elif isinstance(item, torch.Tensor): |
|
|
|
if item.dtype == torch.bool: |
|
assert item.dim() == 1, item.shape |
|
item = item.nonzero().squeeze(1).cpu().numpy().tolist() |
|
elif item.dtype in [torch.int32, torch.int64]: |
|
item = item.cpu().numpy().tolist() |
|
else: |
|
raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) |
|
selected_polygons = [self.polygons[i] for i in item] |
|
return PolygonMasks(selected_polygons) |
|
|
|
def __iter__(self) -> Iterator[List[np.ndarray]]: |
|
""" |
|
Yields: |
|
list[ndarray]: the polygons for one instance. |
|
Each Tensor is a float64 vector representing a polygon. |
|
""" |
|
return iter(self.polygons) |
|
|
|
def __repr__(self) -> str: |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={})".format(len(self.polygons)) |
|
return s |
|
|
|
def __len__(self) -> int: |
|
return len(self.polygons) |
|
|
|
def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: |
|
""" |
|
Crop each mask by the given box, and resize results to (mask_size, mask_size). |
|
This can be used to prepare training targets for Mask R-CNN. |
|
|
|
Args: |
|
boxes (Tensor): Nx4 tensor storing the boxes for each mask |
|
mask_size (int): the size of the rasterized mask. |
|
|
|
Returns: |
|
Tensor: A bool tensor of shape (N, mask_size, mask_size), where |
|
N is the number of predicted boxes for this image. |
|
""" |
|
assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) |
|
|
|
device = boxes.device |
|
|
|
|
|
boxes = boxes.to(torch.device("cpu")) |
|
|
|
results = [ |
|
rasterize_polygons_within_box(poly, box.numpy(), mask_size) |
|
for poly, box in zip(self.polygons, boxes) |
|
] |
|
""" |
|
poly: list[list[float]], the polygons for one instance |
|
box: a tensor of shape (4,) |
|
""" |
|
if len(results) == 0: |
|
return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) |
|
return torch.stack(results, dim=0).to(device=device) |
|
|
|
def area(self): |
|
""" |
|
Computes area of the mask. |
|
Only works with Polygons, using the shoelace formula: |
|
https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates |
|
|
|
Returns: |
|
Tensor: a vector, area for each instance |
|
""" |
|
|
|
area = [] |
|
for polygons_per_instance in self.polygons: |
|
area_per_instance = 0 |
|
for p in polygons_per_instance: |
|
area_per_instance += polygon_area(p[0::2], p[1::2]) |
|
area.append(area_per_instance) |
|
|
|
return torch.tensor(area) |
|
|
|
@staticmethod |
|
def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": |
|
""" |
|
Concatenates a list of PolygonMasks into a single PolygonMasks |
|
|
|
Arguments: |
|
polymasks_list (list[PolygonMasks]) |
|
|
|
Returns: |
|
PolygonMasks: the concatenated PolygonMasks |
|
""" |
|
assert isinstance(polymasks_list, (list, tuple)) |
|
assert len(polymasks_list) > 0 |
|
assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) |
|
|
|
cat_polymasks = type(polymasks_list[0])( |
|
list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) |
|
) |
|
return cat_polymasks |
|
|
|
|
|
class ROIMasks: |
|
""" |
|
Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, |
|
full-image bitmask can be obtained by "pasting" the mask on the region defined |
|
by the corresponding ROI box. |
|
""" |
|
|
|
def __init__(self, tensor: torch.Tensor): |
|
""" |
|
Args: |
|
tensor: (N, M, M) mask tensor that defines the mask within each ROI. |
|
""" |
|
if tensor.dim() != 3: |
|
raise ValueError("ROIMasks must take a masks of 3 dimension.") |
|
self.tensor = tensor |
|
|
|
def to(self, device: torch.device) -> "ROIMasks": |
|
return ROIMasks(self.tensor.to(device)) |
|
|
|
@property |
|
def device(self) -> device: |
|
return self.tensor.device |
|
|
|
def __len__(self): |
|
return self.tensor.shape[0] |
|
|
|
def __getitem__(self, item) -> "ROIMasks": |
|
""" |
|
Returns: |
|
ROIMasks: Create a new :class:`ROIMasks` by indexing. |
|
|
|
The following usage are allowed: |
|
|
|
1. `new_masks = masks[2:10]`: return a slice of masks. |
|
2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor |
|
with `length = len(masks)`. Nonzero elements in the vector will be selected. |
|
|
|
Note that the returned object might share storage with this object, |
|
subject to Pytorch's indexing semantics. |
|
""" |
|
t = self.tensor[item] |
|
if t.dim() != 3: |
|
raise ValueError( |
|
f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" |
|
) |
|
return ROIMasks(t) |
|
|
|
@torch.jit.unused |
|
def __repr__(self) -> str: |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={})".format(len(self.tensor)) |
|
return s |
|
|
|
@torch.jit.unused |
|
def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): |
|
""" |
|
Args: see documentation of :func:`paste_masks_in_image`. |
|
""" |
|
from annotator.oneformer.detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape |
|
|
|
if torch.jit.is_tracing(): |
|
if isinstance(height, torch.Tensor): |
|
paste_func = _paste_masks_tensor_shape |
|
else: |
|
paste_func = paste_masks_in_image |
|
else: |
|
paste_func = retry_if_cuda_oom(paste_masks_in_image) |
|
bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) |
|
return BitMasks(bitmasks) |
|
|