atatakun's picture
Duplicate from atatakun/testapp2
18dd6ad
raw
history blame
5.86 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import fvcore.nn.weight_init as weight_init
import torch.nn.functional as F
from annotator.oneformer.detectron2.layers import CNNBlockBase, Conv2d, get_norm
from annotator.oneformer.detectron2.modeling import BACKBONE_REGISTRY
from annotator.oneformer.detectron2.modeling.backbone.resnet import (
BasicStem,
BottleneckBlock,
DeformBottleneckBlock,
ResNet,
)
class DeepLabStem(CNNBlockBase):
"""
The DeepLab ResNet stem (layers before the first residual block).
"""
def __init__(self, in_channels=3, out_channels=128, norm="BN"):
"""
Args:
norm (str or callable): norm after the first conv layer.
See :func:`layers.get_norm` for supported format.
"""
super().__init__(in_channels, out_channels, 4)
self.in_channels = in_channels
self.conv1 = Conv2d(
in_channels,
out_channels // 2,
kernel_size=3,
stride=2,
padding=1,
bias=False,
norm=get_norm(norm, out_channels // 2),
)
self.conv2 = Conv2d(
out_channels // 2,
out_channels // 2,
kernel_size=3,
stride=1,
padding=1,
bias=False,
norm=get_norm(norm, out_channels // 2),
)
self.conv3 = Conv2d(
out_channels // 2,
out_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False,
norm=get_norm(norm, out_channels),
)
weight_init.c2_msra_fill(self.conv1)
weight_init.c2_msra_fill(self.conv2)
weight_init.c2_msra_fill(self.conv3)
def forward(self, x):
x = self.conv1(x)
x = F.relu_(x)
x = self.conv2(x)
x = F.relu_(x)
x = self.conv3(x)
x = F.relu_(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
@BACKBONE_REGISTRY.register()
def build_resnet_deeplab_backbone(cfg, input_shape):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# need registration of new blocks/stems?
norm = cfg.MODEL.RESNETS.NORM
if cfg.MODEL.RESNETS.STEM_TYPE == "basic":
stem = BasicStem(
in_channels=input_shape.channels,
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
)
elif cfg.MODEL.RESNETS.STEM_TYPE == "deeplab":
stem = DeepLabStem(
in_channels=input_shape.channels,
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
)
else:
raise ValueError("Unknown stem type: {}".format(cfg.MODEL.RESNETS.STEM_TYPE))
# fmt: off
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
res4_dilation = cfg.MODEL.RESNETS.RES4_DILATION
res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
res5_multi_grid = cfg.MODEL.RESNETS.RES5_MULTI_GRID
# fmt: on
assert res4_dilation in {1, 2}, "res4_dilation cannot be {}.".format(res4_dilation)
assert res5_dilation in {1, 2, 4}, "res5_dilation cannot be {}.".format(res5_dilation)
if res4_dilation == 2:
# Always dilate res5 if res4 is dilated.
assert res5_dilation == 4
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
stages = []
# Avoid creating variables without gradients
# It consumes extra memory and may cause allreduce to fail
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
max_stage_idx = max(out_stage_idx)
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
if stage_idx == 4:
dilation = res4_dilation
elif stage_idx == 5:
dilation = res5_dilation
else:
dilation = 1
first_stride = 1 if idx == 0 or dilation > 1 else 2
stage_kargs = {
"num_blocks": num_blocks_per_stage[idx],
"stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
"in_channels": in_channels,
"out_channels": out_channels,
"norm": norm,
}
stage_kargs["bottleneck_channels"] = bottleneck_channels
stage_kargs["stride_in_1x1"] = stride_in_1x1
stage_kargs["dilation"] = dilation
stage_kargs["num_groups"] = num_groups
if deform_on_per_stage[idx]:
stage_kargs["block_class"] = DeformBottleneckBlock
stage_kargs["deform_modulated"] = deform_modulated
stage_kargs["deform_num_groups"] = deform_num_groups
else:
stage_kargs["block_class"] = BottleneckBlock
if stage_idx == 5:
stage_kargs.pop("dilation")
stage_kargs["dilation_per_block"] = [dilation * mg for mg in res5_multi_grid]
blocks = ResNet.make_stage(**stage_kargs)
in_channels = out_channels
out_channels *= 2
bottleneck_channels *= 2
stages.append(blocks)
return ResNet(stem, stages, out_features=out_features).freeze(freeze_at)