|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class DeepLabCE(nn.Module): |
|
""" |
|
Hard pixel mining with cross entropy loss, for semantic segmentation. |
|
This is used in TensorFlow DeepLab frameworks. |
|
Paper: DeeperLab: Single-Shot Image Parser |
|
Reference: https://github.com/tensorflow/models/blob/bd488858d610e44df69da6f89277e9de8a03722c/research/deeplab/utils/train_utils.py#L33 # noqa |
|
Arguments: |
|
ignore_label: Integer, label to ignore. |
|
top_k_percent_pixels: Float, the value lies in [0.0, 1.0]. When its |
|
value < 1.0, only compute the loss for the top k percent pixels |
|
(e.g., the top 20% pixels). This is useful for hard pixel mining. |
|
weight: Tensor, a manual rescaling weight given to each class. |
|
""" |
|
|
|
def __init__(self, ignore_label=-1, top_k_percent_pixels=1.0, weight=None): |
|
super(DeepLabCE, self).__init__() |
|
self.top_k_percent_pixels = top_k_percent_pixels |
|
self.ignore_label = ignore_label |
|
self.criterion = nn.CrossEntropyLoss( |
|
weight=weight, ignore_index=ignore_label, reduction="none" |
|
) |
|
|
|
def forward(self, logits, labels, weights=None): |
|
if weights is None: |
|
pixel_losses = self.criterion(logits, labels).contiguous().view(-1) |
|
else: |
|
|
|
pixel_losses = self.criterion(logits, labels) * weights |
|
pixel_losses = pixel_losses.contiguous().view(-1) |
|
if self.top_k_percent_pixels == 1.0: |
|
return pixel_losses.mean() |
|
|
|
top_k_pixels = int(self.top_k_percent_pixels * pixel_losses.numel()) |
|
pixel_losses, _ = torch.topk(pixel_losses, top_k_pixels) |
|
return pixel_losses.mean() |
|
|