|
import logging |
|
import math |
|
import fvcore.nn.weight_init as weight_init |
|
import torch |
|
import torch.nn as nn |
|
|
|
from annotator.oneformer.detectron2.layers import CNNBlockBase, Conv2d, get_norm |
|
from annotator.oneformer.detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous |
|
|
|
from .backbone import Backbone |
|
from .utils import ( |
|
PatchEmbed, |
|
add_decomposed_rel_pos, |
|
get_abs_pos, |
|
window_partition, |
|
window_unpartition, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
__all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"] |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
input_size=None, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (int or None): Input resolution for calculating the relative positional |
|
parameter size. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) |
|
|
|
if not rel_pos_zero_init: |
|
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) |
|
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) |
|
|
|
def forward(self, x): |
|
B, H, W, _ = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class ResBottleneckBlock(CNNBlockBase): |
|
""" |
|
The standard bottleneck residual block without the last activation layer. |
|
It contains 3 conv layers with kernels 1x1, 3x3, 1x1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
bottleneck_channels, |
|
norm="LN", |
|
act_layer=nn.GELU, |
|
): |
|
""" |
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
bottleneck_channels (int): number of output channels for the 3x3 |
|
"bottleneck" conv layers. |
|
norm (str or callable): normalization for all conv layers. |
|
See :func:`layers.get_norm` for supported format. |
|
act_layer (callable): activation for all conv layers. |
|
""" |
|
super().__init__(in_channels, out_channels, 1) |
|
|
|
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) |
|
self.norm1 = get_norm(norm, bottleneck_channels) |
|
self.act1 = act_layer() |
|
|
|
self.conv2 = Conv2d( |
|
bottleneck_channels, |
|
bottleneck_channels, |
|
3, |
|
padding=1, |
|
bias=False, |
|
) |
|
self.norm2 = get_norm(norm, bottleneck_channels) |
|
self.act2 = act_layer() |
|
|
|
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) |
|
self.norm3 = get_norm(norm, out_channels) |
|
|
|
for layer in [self.conv1, self.conv2, self.conv3]: |
|
weight_init.c2_msra_fill(layer) |
|
for layer in [self.norm1, self.norm2]: |
|
layer.weight.data.fill_(1.0) |
|
layer.bias.data.zero_() |
|
|
|
self.norm3.weight.data.zero_() |
|
self.norm3.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
out = x |
|
for layer in self.children(): |
|
out = layer(out) |
|
|
|
out = x + out |
|
return out |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer blocks with support of window attention and residual propagation blocks""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
window_size=0, |
|
use_residual_block=False, |
|
input_size=None, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. If it equals 0, then not |
|
use window attention. |
|
use_residual_block (bool): If True, use a residual block after the MLP block. |
|
input_size (int or None): Input resolution for calculating the relative positional |
|
parameter size. |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size if window_size == 0 else (window_size, window_size), |
|
) |
|
|
|
from timm.models.layers import DropPath, Mlp |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) |
|
|
|
self.window_size = window_size |
|
|
|
self.use_residual_block = use_residual_block |
|
if use_residual_block: |
|
|
|
self.residual = ResBottleneckBlock( |
|
in_channels=dim, |
|
out_channels=dim, |
|
bottleneck_channels=dim // 2, |
|
norm="LN", |
|
act_layer=act_layer, |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
if self.window_size > 0: |
|
H, W = x.shape[1], x.shape[2] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
x = self.attn(x) |
|
|
|
if self.window_size > 0: |
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) |
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
if self.use_residual_block: |
|
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) |
|
|
|
return x |
|
|
|
|
|
class ViT(Backbone): |
|
""" |
|
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. |
|
"Exploring Plain Vision Transformer Backbones for Object Detection", |
|
https://arxiv.org/abs/2203.16527 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=1024, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
use_abs_pos=True, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
window_size=0, |
|
window_block_indexes=(), |
|
residual_block_indexes=(), |
|
use_act_checkpoint=False, |
|
pretrain_img_size=224, |
|
pretrain_use_cls_token=True, |
|
out_feature="last_feat", |
|
): |
|
""" |
|
Args: |
|
img_size (int): Input image size. |
|
patch_size (int): Patch size. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
depth (int): Depth of ViT. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path_rate (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_abs_pos (bool): If True, use absolute positional embeddings. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. |
|
window_block_indexes (list): Indexes for blocks using window attention. |
|
residual_block_indexes (list): Indexes for blocks using conv propagation. |
|
use_act_checkpoint (bool): If True, use activation checkpointing. |
|
pretrain_img_size (int): input image size for pretraining models. |
|
pretrain_use_cls_token (bool): If True, pretrainig models use class token. |
|
out_feature (str): name of the feature from the last block. |
|
""" |
|
super().__init__() |
|
self.pretrain_use_cls_token = pretrain_use_cls_token |
|
|
|
self.patch_embed = PatchEmbed( |
|
kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size), |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
if use_abs_pos: |
|
|
|
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) |
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
block = Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
window_size=window_size if i in window_block_indexes else 0, |
|
use_residual_block=i in residual_block_indexes, |
|
input_size=(img_size // patch_size, img_size // patch_size), |
|
) |
|
if use_act_checkpoint: |
|
|
|
from fairscale.nn.checkpoint import checkpoint_wrapper |
|
|
|
block = checkpoint_wrapper(block) |
|
self.blocks.append(block) |
|
|
|
self._out_feature_channels = {out_feature: embed_dim} |
|
self._out_feature_strides = {out_feature: patch_size} |
|
self._out_features = [out_feature] |
|
|
|
if self.pos_embed is not None: |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self.patch_embed(x) |
|
if self.pos_embed is not None: |
|
x = x + get_abs_pos( |
|
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) |
|
) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)} |
|
return outputs |
|
|
|
|
|
class SimpleFeaturePyramid(Backbone): |
|
""" |
|
This module implements SimpleFeaturePyramid in :paper:`vitdet`. |
|
It creates pyramid features built on top of the input feature map. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
net, |
|
in_feature, |
|
out_channels, |
|
scale_factors, |
|
top_block=None, |
|
norm="LN", |
|
square_pad=0, |
|
): |
|
""" |
|
Args: |
|
net (Backbone): module representing the subnetwork backbone. |
|
Must be a subclass of :class:`Backbone`. |
|
in_feature (str): names of the input feature maps coming |
|
from the net. |
|
out_channels (int): number of channels in the output feature maps. |
|
scale_factors (list[float]): list of scaling factors to upsample or downsample |
|
the input features for creating pyramid features. |
|
top_block (nn.Module or None): if provided, an extra operation will |
|
be performed on the output of the last (smallest resolution) |
|
pyramid output, and the result will extend the result list. The top_block |
|
further downsamples the feature map. It must have an attribute |
|
"num_levels", meaning the number of extra pyramid levels added by |
|
this block, and "in_feature", which is a string representing |
|
its input feature (e.g., p5). |
|
norm (str): the normalization to use. |
|
square_pad (int): If > 0, require input images to be padded to specific square size. |
|
""" |
|
super(SimpleFeaturePyramid, self).__init__() |
|
assert isinstance(net, Backbone) |
|
|
|
self.scale_factors = scale_factors |
|
|
|
input_shapes = net.output_shape() |
|
strides = [int(input_shapes[in_feature].stride / scale) for scale in scale_factors] |
|
_assert_strides_are_log2_contiguous(strides) |
|
|
|
dim = input_shapes[in_feature].channels |
|
self.stages = [] |
|
use_bias = norm == "" |
|
for idx, scale in enumerate(scale_factors): |
|
out_dim = dim |
|
if scale == 4.0: |
|
layers = [ |
|
nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2), |
|
get_norm(norm, dim // 2), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(dim // 2, dim // 4, kernel_size=2, stride=2), |
|
] |
|
out_dim = dim // 4 |
|
elif scale == 2.0: |
|
layers = [nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2)] |
|
out_dim = dim // 2 |
|
elif scale == 1.0: |
|
layers = [] |
|
elif scale == 0.5: |
|
layers = [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
else: |
|
raise NotImplementedError(f"scale_factor={scale} is not supported yet.") |
|
|
|
layers.extend( |
|
[ |
|
Conv2d( |
|
out_dim, |
|
out_channels, |
|
kernel_size=1, |
|
bias=use_bias, |
|
norm=get_norm(norm, out_channels), |
|
), |
|
Conv2d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
bias=use_bias, |
|
norm=get_norm(norm, out_channels), |
|
), |
|
] |
|
) |
|
layers = nn.Sequential(*layers) |
|
|
|
stage = int(math.log2(strides[idx])) |
|
self.add_module(f"simfp_{stage}", layers) |
|
self.stages.append(layers) |
|
|
|
self.net = net |
|
self.in_feature = in_feature |
|
self.top_block = top_block |
|
|
|
self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides} |
|
|
|
if self.top_block is not None: |
|
for s in range(stage, stage + self.top_block.num_levels): |
|
self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1) |
|
|
|
self._out_features = list(self._out_feature_strides.keys()) |
|
self._out_feature_channels = {k: out_channels for k in self._out_features} |
|
self._size_divisibility = strides[-1] |
|
self._square_pad = square_pad |
|
|
|
@property |
|
def padding_constraints(self): |
|
return { |
|
"size_divisiblity": self._size_divisibility, |
|
"square_size": self._square_pad, |
|
} |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. |
|
|
|
Returns: |
|
dict[str->Tensor]: |
|
mapping from feature map name to pyramid feature map tensor |
|
in high to low resolution order. Returned feature names follow the FPN |
|
convention: "p<stage>", where stage has stride = 2 ** stage e.g., |
|
["p2", "p3", ..., "p6"]. |
|
""" |
|
bottom_up_features = self.net(x) |
|
features = bottom_up_features[self.in_feature] |
|
results = [] |
|
|
|
for stage in self.stages: |
|
results.append(stage(features)) |
|
|
|
if self.top_block is not None: |
|
if self.top_block.in_feature in bottom_up_features: |
|
top_block_in_feature = bottom_up_features[self.top_block.in_feature] |
|
else: |
|
top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)] |
|
results.extend(self.top_block(top_block_in_feature)) |
|
assert len(self._out_features) == len(results) |
|
return {f: res for f, res in zip(self._out_features, results)} |
|
|
|
|
|
def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12): |
|
""" |
|
Calculate lr decay rate for different ViT blocks. |
|
Args: |
|
name (string): parameter name. |
|
lr_decay_rate (float): base lr decay rate. |
|
num_layers (int): number of ViT blocks. |
|
|
|
Returns: |
|
lr decay rate for the given parameter. |
|
""" |
|
layer_id = num_layers + 1 |
|
if name.startswith("backbone"): |
|
if ".pos_embed" in name or ".patch_embed" in name: |
|
layer_id = 0 |
|
elif ".blocks." in name and ".residual." not in name: |
|
layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 |
|
|
|
return lr_decay_rate ** (num_layers + 1 - layer_id) |
|
|