|
|
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward']) |
|
|
|
|
|
class RoIAlignRotatedFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, features, rois, out_size, spatial_scale, sample_num, |
|
aligned, clockwise): |
|
if isinstance(out_size, int): |
|
out_h = out_size |
|
out_w = out_size |
|
elif isinstance(out_size, tuple): |
|
assert len(out_size) == 2 |
|
assert isinstance(out_size[0], int) |
|
assert isinstance(out_size[1], int) |
|
out_h, out_w = out_size |
|
else: |
|
raise TypeError( |
|
'"out_size" must be an integer or tuple of integers') |
|
return g.op( |
|
'mmcv::MMCVRoIAlignRotated', |
|
features, |
|
rois, |
|
output_height_i=out_h, |
|
output_width_i=out_h, |
|
spatial_scale_f=spatial_scale, |
|
sampling_ratio_i=sample_num, |
|
aligned_i=aligned, |
|
clockwise_i=clockwise) |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
features, |
|
rois, |
|
out_size, |
|
spatial_scale, |
|
sample_num=0, |
|
aligned=True, |
|
clockwise=False): |
|
if isinstance(out_size, int): |
|
out_h = out_size |
|
out_w = out_size |
|
elif isinstance(out_size, tuple): |
|
assert len(out_size) == 2 |
|
assert isinstance(out_size[0], int) |
|
assert isinstance(out_size[1], int) |
|
out_h, out_w = out_size |
|
else: |
|
raise TypeError( |
|
'"out_size" must be an integer or tuple of integers') |
|
ctx.spatial_scale = spatial_scale |
|
ctx.sample_num = sample_num |
|
ctx.aligned = aligned |
|
ctx.clockwise = clockwise |
|
ctx.save_for_backward(rois) |
|
ctx.feature_size = features.size() |
|
|
|
batch_size, num_channels, data_height, data_width = features.size() |
|
num_rois = rois.size(0) |
|
|
|
output = features.new_zeros(num_rois, num_channels, out_h, out_w) |
|
ext_module.roi_align_rotated_forward( |
|
features, |
|
rois, |
|
output, |
|
pooled_height=out_h, |
|
pooled_width=out_w, |
|
spatial_scale=spatial_scale, |
|
sample_num=sample_num, |
|
aligned=aligned, |
|
clockwise=clockwise) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
feature_size = ctx.feature_size |
|
spatial_scale = ctx.spatial_scale |
|
aligned = ctx.aligned |
|
clockwise = ctx.clockwise |
|
sample_num = ctx.sample_num |
|
rois = ctx.saved_tensors[0] |
|
assert feature_size is not None |
|
batch_size, num_channels, data_height, data_width = feature_size |
|
|
|
out_w = grad_output.size(3) |
|
out_h = grad_output.size(2) |
|
|
|
grad_input = grad_rois = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
grad_input = rois.new_zeros(batch_size, num_channels, data_height, |
|
data_width) |
|
ext_module.roi_align_rotated_backward( |
|
grad_output.contiguous(), |
|
rois, |
|
grad_input, |
|
pooled_height=out_h, |
|
pooled_width=out_w, |
|
spatial_scale=spatial_scale, |
|
sample_num=sample_num, |
|
aligned=aligned, |
|
clockwise=clockwise) |
|
return grad_input, grad_rois, None, None, None, None, None |
|
|
|
|
|
roi_align_rotated = RoIAlignRotatedFunction.apply |
|
|
|
|
|
class RoIAlignRotated(nn.Module): |
|
"""RoI align pooling layer for rotated proposals. |
|
|
|
It accepts a feature map of shape (N, C, H, W) and rois with shape |
|
(n, 6) with each roi decoded as (batch_index, center_x, center_y, |
|
w, h, angle). The angle is in radian. |
|
|
|
Args: |
|
out_size (tuple): h, w |
|
spatial_scale (float): scale the input boxes by this number |
|
sample_num (int): number of inputs samples to take for each |
|
output sample. 0 to take samples densely for current models. |
|
aligned (bool): if False, use the legacy implementation in |
|
MMDetection. If True, align the results more perfectly. |
|
Default: True. |
|
clockwise (bool): If True, the angle in each proposal follows a |
|
clockwise fashion in image space, otherwise, the angle is |
|
counterclockwise. Default: False. |
|
|
|
Note: |
|
The implementation of RoIAlign when aligned=True is modified from |
|
https://github.com/facebookresearch/detectron2/ |
|
|
|
The meaning of aligned=True: |
|
|
|
Given a continuous coordinate c, its two neighboring pixel |
|
indices (in our pixel model) are computed by floor(c - 0.5) and |
|
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete |
|
indices [0] and [1] (which are sampled from the underlying signal |
|
at continuous coordinates 0.5 and 1.5). But the original roi_align |
|
(aligned=False) does not subtract the 0.5 when computing |
|
neighboring pixel indices and therefore it uses pixels with a |
|
slightly incorrect alignment (relative to our pixel model) when |
|
performing bilinear interpolation. |
|
|
|
With `aligned=True`, |
|
we first appropriately scale the ROI and then shift it by -0.5 |
|
prior to calling roi_align. This produces the correct neighbors; |
|
|
|
The difference does not make a difference to the model's |
|
performance if ROIAlign is used together with conv layers. |
|
""" |
|
|
|
def __init__(self, |
|
out_size, |
|
spatial_scale, |
|
sample_num=0, |
|
aligned=True, |
|
clockwise=False): |
|
super(RoIAlignRotated, self).__init__() |
|
|
|
self.out_size = out_size |
|
self.spatial_scale = float(spatial_scale) |
|
self.sample_num = int(sample_num) |
|
self.aligned = aligned |
|
self.clockwise = clockwise |
|
|
|
def forward(self, features, rois): |
|
return RoIAlignRotatedFunction.apply(features, rois, self.out_size, |
|
self.spatial_scale, |
|
self.sample_num, self.aligned, |
|
self.clockwise) |
|
|