atatakun's picture
Duplicate from atatakun/testapp2
18dd6ad
raw
history blame
22.1 kB
# Modified from flops-counter.pytorch by Vladislav Sovrasov
# original repo: https://github.com/sovrasov/flops-counter.pytorch
# MIT License
# Copyright (c) 2018 Vladislav Sovrasov
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import annotator.mmpkg.mmcv as mmcv
def get_model_complexity_info(model,
input_shape,
print_per_layer_stat=True,
as_strings=True,
input_constructor=None,
flush=False,
ost=sys.stdout):
"""Get complexity information of a model.
This method can calculate FLOPs and parameter counts of a model with
corresponding input shape. It can also print complexity information for
each layer in a model.
Supported layers are listed as below:
- Convolutions: ``nn.Conv1d``, ``nn.Conv2d``, ``nn.Conv3d``.
- Activations: ``nn.ReLU``, ``nn.PReLU``, ``nn.ELU``, ``nn.LeakyReLU``,
``nn.ReLU6``.
- Poolings: ``nn.MaxPool1d``, ``nn.MaxPool2d``, ``nn.MaxPool3d``,
``nn.AvgPool1d``, ``nn.AvgPool2d``, ``nn.AvgPool3d``,
``nn.AdaptiveMaxPool1d``, ``nn.AdaptiveMaxPool2d``,
``nn.AdaptiveMaxPool3d``, ``nn.AdaptiveAvgPool1d``,
``nn.AdaptiveAvgPool2d``, ``nn.AdaptiveAvgPool3d``.
- BatchNorms: ``nn.BatchNorm1d``, ``nn.BatchNorm2d``,
``nn.BatchNorm3d``, ``nn.GroupNorm``, ``nn.InstanceNorm1d``,
``InstanceNorm2d``, ``InstanceNorm3d``, ``nn.LayerNorm``.
- Linear: ``nn.Linear``.
- Deconvolution: ``nn.ConvTranspose2d``.
- Upsample: ``nn.Upsample``.
Args:
model (nn.Module): The model for complexity calculation.
input_shape (tuple): Input shape used for calculation.
print_per_layer_stat (bool): Whether to print complexity information
for each layer in a model. Default: True.
as_strings (bool): Output FLOPs and params counts in a string form.
Default: True.
input_constructor (None | callable): If specified, it takes a callable
method that generates input. otherwise, it will generate a random
tensor with input shape to calculate FLOPs. Default: None.
flush (bool): same as that in :func:`print`. Default: False.
ost (stream): same as ``file`` param in :func:`print`.
Default: sys.stdout.
Returns:
tuple[float | str]: If ``as_strings`` is set to True, it will return
FLOPs and parameter counts in a string format. otherwise, it will
return those in a float number format.
"""
assert type(input_shape) is tuple
assert len(input_shape) >= 1
assert isinstance(model, nn.Module)
flops_model = add_flops_counting_methods(model)
flops_model.eval()
flops_model.start_flops_count()
if input_constructor:
input = input_constructor(input_shape)
_ = flops_model(**input)
else:
try:
batch = torch.ones(()).new_empty(
(1, *input_shape),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)
except StopIteration:
# Avoid StopIteration for models which have no parameters,
# like `nn.Relu()`, `nn.AvgPool2d`, etc.
batch = torch.ones(()).new_empty((1, *input_shape))
_ = flops_model(batch)
flops_count, params_count = flops_model.compute_average_flops_cost()
if print_per_layer_stat:
print_model_with_flops(
flops_model, flops_count, params_count, ost=ost, flush=flush)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GFLOPs', precision=2):
"""Convert FLOPs number into a string.
Note that Here we take a multiply-add counts as one FLOP.
Args:
flops (float): FLOPs number to be converted.
units (str | None): Converted FLOPs units. Options are None, 'GFLOPs',
'MFLOPs', 'KFLOPs', 'FLOPs'. If set to None, it will automatically
choose the most suitable unit for FLOPs. Default: 'GFLOPs'.
precision (int): Digit number after the decimal point. Default: 2.
Returns:
str: The converted FLOPs number with units.
Examples:
>>> flops_to_string(1e9)
'1.0 GFLOPs'
>>> flops_to_string(2e5, 'MFLOPs')
'0.2 MFLOPs'
>>> flops_to_string(3e-9, None)
'3e-09 FLOPs'
"""
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GFLOPs'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MFLOPs'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KFLOPs'
else:
return str(flops) + ' FLOPs'
else:
if units == 'GFLOPs':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MFLOPs':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KFLOPs':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' FLOPs'
def params_to_string(num_params, units=None, precision=2):
"""Convert parameter number into a string.
Args:
num_params (float): Parameter number to be converted.
units (str | None): Converted FLOPs units. Options are None, 'M',
'K' and ''. If set to None, it will automatically choose the most
suitable unit for Parameter number. Default: None.
precision (int): Digit number after the decimal point. Default: 2.
Returns:
str: The converted parameter number with units.
Examples:
>>> params_to_string(1e9)
'1000.0 M'
>>> params_to_string(2e5)
'200.0 k'
>>> params_to_string(3e-9)
'3e-09'
"""
if units is None:
if num_params // 10**6 > 0:
return str(round(num_params / 10**6, precision)) + ' M'
elif num_params // 10**3:
return str(round(num_params / 10**3, precision)) + ' k'
else:
return str(num_params)
else:
if units == 'M':
return str(round(num_params / 10.**6, precision)) + ' ' + units
elif units == 'K':
return str(round(num_params / 10.**3, precision)) + ' ' + units
else:
return str(num_params)
def print_model_with_flops(model,
total_flops,
total_params,
units='GFLOPs',
precision=3,
ost=sys.stdout,
flush=False):
"""Print a model with FLOPs for each layer.
Args:
model (nn.Module): The model to be printed.
total_flops (float): Total FLOPs of the model.
total_params (float): Total parameter counts of the model.
units (str | None): Converted FLOPs units. Default: 'GFLOPs'.
precision (int): Digit number after the decimal point. Default: 3.
ost (stream): same as `file` param in :func:`print`.
Default: sys.stdout.
flush (bool): same as that in :func:`print`. Default: False.
Example:
>>> class ExampleModel(nn.Module):
>>> def __init__(self):
>>> super().__init__()
>>> self.conv1 = nn.Conv2d(3, 8, 3)
>>> self.conv2 = nn.Conv2d(8, 256, 3)
>>> self.conv3 = nn.Conv2d(256, 8, 3)
>>> self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
>>> self.flatten = nn.Flatten()
>>> self.fc = nn.Linear(8, 1)
>>> def forward(self, x):
>>> x = self.conv1(x)
>>> x = self.conv2(x)
>>> x = self.conv3(x)
>>> x = self.avg_pool(x)
>>> x = self.flatten(x)
>>> x = self.fc(x)
>>> return x
>>> model = ExampleModel()
>>> x = (3, 16, 16)
to print the complexity information state for each layer, you can use
>>> get_model_complexity_info(model, x)
or directly use
>>> print_model_with_flops(model, 4579784.0, 37361)
ExampleModel(
0.037 M, 100.000% Params, 0.005 GFLOPs, 100.000% FLOPs,
(conv1): Conv2d(0.0 M, 0.600% Params, 0.0 GFLOPs, 0.959% FLOPs, 3, 8, kernel_size=(3, 3), stride=(1, 1)) # noqa: E501
(conv2): Conv2d(0.019 M, 50.020% Params, 0.003 GFLOPs, 58.760% FLOPs, 8, 256, kernel_size=(3, 3), stride=(1, 1))
(conv3): Conv2d(0.018 M, 49.356% Params, 0.002 GFLOPs, 40.264% FLOPs, 256, 8, kernel_size=(3, 3), stride=(1, 1))
(avg_pool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.017% FLOPs, output_size=(1, 1))
(flatten): Flatten(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.000% FLOPs, )
(fc): Linear(0.0 M, 0.024% Params, 0.0 GFLOPs, 0.000% FLOPs, in_features=8, out_features=1, bias=True)
)
"""
def accumulate_params(self):
if is_supported_instance(self):
return self.__params__
else:
sum = 0
for m in self.children():
sum += m.accumulate_params()
return sum
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_num_params = self.accumulate_params()
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([
params_to_string(
accumulated_num_params, units='M', precision=precision),
'{:.3%} Params'.format(accumulated_num_params / total_params),
flops_to_string(
accumulated_flops_cost, units=units, precision=precision),
'{:.3%} FLOPs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()
])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
m.accumulate_params = accumulate_params.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model, file=ost, flush=flush)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
"""Calculate parameter number of a model.
Args:
model (nn.module): The model for parameter number calculation.
Returns:
float: Parameter number of the model.
"""
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return num_params
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
net_main_module.start_flops_count = start_flops_count.__get__(
net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(
net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(
net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__( # noqa: E501
net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""Compute average FLOPs cost.
A method to compute average FLOPs cost, which will be available after
`add_flops_counting_methods()` is called on a desired net object.
Returns:
float: Current mean flops consumption per image.
"""
batches_count = self.__batch_counter__
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
params_sum = get_model_parameters_number(self)
return flops_sum / batches_count, params_sum
def start_flops_count(self):
"""Activate the computation of mean flops consumption per image.
A method to activate the computation of mean flops consumption per image.
which will be available after ``add_flops_counting_methods()`` is called on
a desired net object. It should be called before running the network.
"""
add_batch_counter_hook_function(self)
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
else:
handle = module.register_forward_hook(
get_modules_mapping()[type(module)])
module.__flops_handle__ = handle
self.apply(partial(add_flops_counter_hook_function))
def stop_flops_count(self):
"""Stop computing the mean flops consumption per image.
A method to stop computing the mean flops consumption per image, which will
be available after ``add_flops_counting_methods()`` is called on a desired
net object. It can be called to pause the computation whenever.
"""
remove_batch_counter_hook_function(self)
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""Reset statistics computed so far.
A method to Reset computed statistics, which will be available after
`add_flops_counting_methods()` is called on a desired net object.
"""
add_batch_counter_variables_or_reset(self)
self.apply(add_flops_counter_variable_or_reset)
# ---- Internal functions
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
def linear_flops_counter_hook(module, input, output):
input = input[0]
output_last_dim = output.shape[
-1] # pytorch checks dimensions, so here we don't care much
module.__flops__ += int(np.prod(input.shape) * output_last_dim)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def norm_flops_counter_hook(module, input, output):
input = input[0]
batch_flops = np.prod(input.shape)
if (getattr(module, 'affine', False)
or getattr(module, 'elementwise_affine', False)):
batch_flops *= 2
module.__flops__ += int(batch_flops)
def deconv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
input_height, input_width = input.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = (
kernel_height * kernel_width * in_channels * filters_per_channel)
active_elements_count = batch_size * input_height * input_width
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
output_height, output_width = output.shape[2:]
bias_flops = out_channels * batch_size * output_height * output_height
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = int(
np.prod(kernel_dims)) * in_channels * filters_per_channel
active_elements_count = batch_size * int(np.prod(output_dims))
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
bias_flops = out_channels * active_elements_count
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def batch_counter_hook(module, input, output):
batch_size = 1
if len(input) > 0:
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = len(input)
else:
pass
print('Warning! No positional inputs found for a module, '
'assuming batch size is 1.')
module.__batch_counter__ += batch_size
def add_batch_counter_variables_or_reset(module):
module.__batch_counter__ = 0
def add_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
return
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def remove_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
module.__batch_counter_handle__.remove()
del module.__batch_counter_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
if hasattr(module, '__flops__') or hasattr(module, '__params__'):
print('Warning: variables __flops__ or __params__ are already '
'defined for the module' + type(module).__name__ +
' ptflops can affect your code!')
module.__flops__ = 0
module.__params__ = get_model_parameters_number(module)
def is_supported_instance(module):
if type(module) in get_modules_mapping():
return True
return False
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
def get_modules_mapping():
return {
# convolutions
nn.Conv1d: conv_flops_counter_hook,
nn.Conv2d: conv_flops_counter_hook,
mmcv.cnn.bricks.Conv2d: conv_flops_counter_hook,
nn.Conv3d: conv_flops_counter_hook,
mmcv.cnn.bricks.Conv3d: conv_flops_counter_hook,
# activations
nn.ReLU: relu_flops_counter_hook,
nn.PReLU: relu_flops_counter_hook,
nn.ELU: relu_flops_counter_hook,
nn.LeakyReLU: relu_flops_counter_hook,
nn.ReLU6: relu_flops_counter_hook,
# poolings
nn.MaxPool1d: pool_flops_counter_hook,
nn.AvgPool1d: pool_flops_counter_hook,
nn.AvgPool2d: pool_flops_counter_hook,
nn.MaxPool2d: pool_flops_counter_hook,
mmcv.cnn.bricks.MaxPool2d: pool_flops_counter_hook,
nn.MaxPool3d: pool_flops_counter_hook,
mmcv.cnn.bricks.MaxPool3d: pool_flops_counter_hook,
nn.AvgPool3d: pool_flops_counter_hook,
nn.AdaptiveMaxPool1d: pool_flops_counter_hook,
nn.AdaptiveAvgPool1d: pool_flops_counter_hook,
nn.AdaptiveMaxPool2d: pool_flops_counter_hook,
nn.AdaptiveAvgPool2d: pool_flops_counter_hook,
nn.AdaptiveMaxPool3d: pool_flops_counter_hook,
nn.AdaptiveAvgPool3d: pool_flops_counter_hook,
# normalizations
nn.BatchNorm1d: norm_flops_counter_hook,
nn.BatchNorm2d: norm_flops_counter_hook,
nn.BatchNorm3d: norm_flops_counter_hook,
nn.GroupNorm: norm_flops_counter_hook,
nn.InstanceNorm1d: norm_flops_counter_hook,
nn.InstanceNorm2d: norm_flops_counter_hook,
nn.InstanceNorm3d: norm_flops_counter_hook,
nn.LayerNorm: norm_flops_counter_hook,
# FC
nn.Linear: linear_flops_counter_hook,
mmcv.cnn.bricks.Linear: linear_flops_counter_hook,
# Upscale
nn.Upsample: upsample_flops_counter_hook,
# Deconvolution
nn.ConvTranspose2d: deconv_flops_counter_hook,
mmcv.cnn.bricks.ConvTranspose2d: deconv_flops_counter_hook,
}