|
import cv2 |
|
import numpy as np |
|
import math |
|
import time |
|
from scipy.ndimage.filters import gaussian_filter |
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
import torch |
|
from torchvision import transforms |
|
|
|
from . import util |
|
from .model import bodypose_model |
|
|
|
class Body(object): |
|
def __init__(self, model_path): |
|
self.model = bodypose_model() |
|
if torch.cuda.is_available(): |
|
self.model = self.model.cuda() |
|
print('cuda') |
|
model_dict = util.transfer(self.model, torch.load(model_path)) |
|
self.model.load_state_dict(model_dict) |
|
self.model.eval() |
|
|
|
def __call__(self, oriImg): |
|
|
|
scale_search = [0.5] |
|
boxsize = 368 |
|
stride = 8 |
|
padValue = 128 |
|
thre1 = 0.1 |
|
thre2 = 0.05 |
|
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] |
|
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) |
|
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) |
|
|
|
for m in range(len(multiplier)): |
|
scale = multiplier[m] |
|
imageToTest = util.smart_resize_k(oriImg, fx=scale, fy=scale) |
|
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) |
|
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 |
|
im = np.ascontiguousarray(im) |
|
|
|
data = torch.from_numpy(im).float() |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
|
|
with torch.no_grad(): |
|
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) |
|
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() |
|
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() |
|
|
|
|
|
|
|
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) |
|
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride) |
|
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
heatmap = util.smart_resize(heatmap, (oriImg.shape[0], oriImg.shape[1])) |
|
|
|
|
|
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) |
|
paf = util.smart_resize_k(paf, fx=stride, fy=stride) |
|
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
paf = util.smart_resize(paf, (oriImg.shape[0], oriImg.shape[1])) |
|
|
|
heatmap_avg += heatmap_avg + heatmap / len(multiplier) |
|
paf_avg += + paf / len(multiplier) |
|
|
|
all_peaks = [] |
|
peak_counter = 0 |
|
|
|
for part in range(18): |
|
map_ori = heatmap_avg[:, :, part] |
|
one_heatmap = gaussian_filter(map_ori, sigma=3) |
|
|
|
map_left = np.zeros(one_heatmap.shape) |
|
map_left[1:, :] = one_heatmap[:-1, :] |
|
map_right = np.zeros(one_heatmap.shape) |
|
map_right[:-1, :] = one_heatmap[1:, :] |
|
map_up = np.zeros(one_heatmap.shape) |
|
map_up[:, 1:] = one_heatmap[:, :-1] |
|
map_down = np.zeros(one_heatmap.shape) |
|
map_down[:, :-1] = one_heatmap[:, 1:] |
|
|
|
peaks_binary = np.logical_and.reduce( |
|
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) |
|
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) |
|
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] |
|
peak_id = range(peak_counter, peak_counter + len(peaks)) |
|
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] |
|
|
|
all_peaks.append(peaks_with_score_and_id) |
|
peak_counter += len(peaks) |
|
|
|
|
|
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ |
|
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ |
|
[1, 16], [16, 18], [3, 17], [6, 18]] |
|
|
|
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \ |
|
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \ |
|
[55, 56], [37, 38], [45, 46]] |
|
|
|
connection_all = [] |
|
special_k = [] |
|
mid_num = 10 |
|
|
|
for k in range(len(mapIdx)): |
|
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] |
|
candA = all_peaks[limbSeq[k][0] - 1] |
|
candB = all_peaks[limbSeq[k][1] - 1] |
|
nA = len(candA) |
|
nB = len(candB) |
|
indexA, indexB = limbSeq[k] |
|
if (nA != 0 and nB != 0): |
|
connection_candidate = [] |
|
for i in range(nA): |
|
for j in range(nB): |
|
vec = np.subtract(candB[j][:2], candA[i][:2]) |
|
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) |
|
norm = max(0.001, norm) |
|
vec = np.divide(vec, norm) |
|
|
|
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ |
|
np.linspace(candA[i][1], candB[j][1], num=mid_num))) |
|
|
|
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ |
|
for I in range(len(startend))]) |
|
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ |
|
for I in range(len(startend))]) |
|
|
|
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) |
|
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( |
|
0.5 * oriImg.shape[0] / norm - 1, 0) |
|
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) |
|
criterion2 = score_with_dist_prior > 0 |
|
if criterion1 and criterion2: |
|
connection_candidate.append( |
|
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) |
|
|
|
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) |
|
connection = np.zeros((0, 5)) |
|
for c in range(len(connection_candidate)): |
|
i, j, s = connection_candidate[c][0:3] |
|
if (i not in connection[:, 3] and j not in connection[:, 4]): |
|
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) |
|
if (len(connection) >= min(nA, nB)): |
|
break |
|
|
|
connection_all.append(connection) |
|
else: |
|
special_k.append(k) |
|
connection_all.append([]) |
|
|
|
|
|
|
|
subset = -1 * np.ones((0, 20)) |
|
candidate = np.array([item for sublist in all_peaks for item in sublist]) |
|
|
|
for k in range(len(mapIdx)): |
|
if k not in special_k: |
|
partAs = connection_all[k][:, 0] |
|
partBs = connection_all[k][:, 1] |
|
indexA, indexB = np.array(limbSeq[k]) - 1 |
|
|
|
for i in range(len(connection_all[k])): |
|
found = 0 |
|
subset_idx = [-1, -1] |
|
for j in range(len(subset)): |
|
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: |
|
subset_idx[found] = j |
|
found += 1 |
|
|
|
if found == 1: |
|
j = subset_idx[0] |
|
if subset[j][indexB] != partBs[i]: |
|
subset[j][indexB] = partBs[i] |
|
subset[j][-1] += 1 |
|
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
elif found == 2: |
|
j1, j2 = subset_idx |
|
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] |
|
if len(np.nonzero(membership == 2)[0]) == 0: |
|
subset[j1][:-2] += (subset[j2][:-2] + 1) |
|
subset[j1][-2:] += subset[j2][-2:] |
|
subset[j1][-2] += connection_all[k][i][2] |
|
subset = np.delete(subset, j2, 0) |
|
else: |
|
subset[j1][indexB] = partBs[i] |
|
subset[j1][-1] += 1 |
|
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
|
|
|
|
elif not found and k < 17: |
|
row = -1 * np.ones(20) |
|
row[indexA] = partAs[i] |
|
row[indexB] = partBs[i] |
|
row[-1] = 2 |
|
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] |
|
subset = np.vstack([subset, row]) |
|
|
|
deleteIdx = [] |
|
for i in range(len(subset)): |
|
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: |
|
deleteIdx.append(i) |
|
subset = np.delete(subset, deleteIdx, axis=0) |
|
|
|
|
|
|
|
return candidate, subset |
|
|
|
if __name__ == "__main__": |
|
body_estimation = Body('../model/body_pose_model.pth') |
|
|
|
test_image = '../images/ski.jpg' |
|
oriImg = cv2.imread(test_image) |
|
candidate, subset = body_estimation(oriImg) |
|
canvas = util.draw_bodypose(oriImg, candidate, subset) |
|
plt.imshow(canvas[:, :, [2, 1, 0]]) |
|
plt.show() |
|
|