|
__author__ = 'tylin' |
|
__version__ = '2.0' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import time |
|
import numpy as np |
|
import copy |
|
import itertools |
|
from . import mask as maskUtils |
|
import os |
|
from collections import defaultdict |
|
import sys |
|
PYTHON_VERSION = sys.version_info[0] |
|
if PYTHON_VERSION == 2: |
|
from urllib import urlretrieve |
|
elif PYTHON_VERSION == 3: |
|
from urllib.request import urlretrieve |
|
|
|
|
|
def _isArrayLike(obj): |
|
return hasattr(obj, '__iter__') and hasattr(obj, '__len__') |
|
|
|
|
|
class COCO: |
|
def __init__(self, annotation_file=None): |
|
""" |
|
Constructor of Microsoft COCO helper class for reading and visualizing annotations. |
|
:param annotation_file (str): location of annotation file |
|
:param image_folder (str): location to the folder that hosts images. |
|
:return: |
|
""" |
|
|
|
self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() |
|
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) |
|
if not annotation_file == None: |
|
print('loading annotations into memory...') |
|
tic = time.time() |
|
with open(annotation_file, 'r') as f: |
|
dataset = json.load(f) |
|
assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) |
|
print('Done (t={:0.2f}s)'.format(time.time()- tic)) |
|
self.dataset = dataset |
|
self.createIndex() |
|
|
|
def createIndex(self): |
|
|
|
print('creating index...') |
|
anns, cats, imgs = {}, {}, {} |
|
imgToAnns,catToImgs = defaultdict(list),defaultdict(list) |
|
if 'annotations' in self.dataset: |
|
for ann in self.dataset['annotations']: |
|
imgToAnns[ann['image_id']].append(ann) |
|
anns[ann['id']] = ann |
|
|
|
if 'images' in self.dataset: |
|
for img in self.dataset['images']: |
|
imgs[img['id']] = img |
|
|
|
if 'categories' in self.dataset: |
|
for cat in self.dataset['categories']: |
|
cats[cat['id']] = cat |
|
|
|
if 'annotations' in self.dataset and 'categories' in self.dataset: |
|
for ann in self.dataset['annotations']: |
|
catToImgs[ann['category_id']].append(ann['image_id']) |
|
|
|
print('index created!') |
|
|
|
|
|
self.anns = anns |
|
self.imgToAnns = imgToAnns |
|
self.catToImgs = catToImgs |
|
self.imgs = imgs |
|
self.cats = cats |
|
|
|
def info(self): |
|
""" |
|
Print information about the annotation file. |
|
:return: |
|
""" |
|
for key, value in self.dataset['info'].items(): |
|
print('{}: {}'.format(key, value)) |
|
|
|
def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): |
|
""" |
|
Get ann ids that satisfy given filter conditions. default skips that filter |
|
:param imgIds (int array) : get anns for given imgs |
|
catIds (int array) : get anns for given cats |
|
areaRng (float array) : get anns for given area range (e.g. [0 inf]) |
|
iscrowd (boolean) : get anns for given crowd label (False or True) |
|
:return: ids (int array) : integer array of ann ids |
|
""" |
|
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] |
|
catIds = catIds if _isArrayLike(catIds) else [catIds] |
|
|
|
if len(imgIds) == len(catIds) == len(areaRng) == 0: |
|
anns = self.dataset['annotations'] |
|
else: |
|
if not len(imgIds) == 0: |
|
lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] |
|
anns = list(itertools.chain.from_iterable(lists)) |
|
else: |
|
anns = self.dataset['annotations'] |
|
anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] |
|
anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] |
|
if not iscrowd == None: |
|
ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] |
|
else: |
|
ids = [ann['id'] for ann in anns] |
|
return ids |
|
|
|
def getCatIds(self, catNms=[], supNms=[], catIds=[]): |
|
""" |
|
filtering parameters. default skips that filter. |
|
:param catNms (str array) : get cats for given cat names |
|
:param supNms (str array) : get cats for given supercategory names |
|
:param catIds (int array) : get cats for given cat ids |
|
:return: ids (int array) : integer array of cat ids |
|
""" |
|
catNms = catNms if _isArrayLike(catNms) else [catNms] |
|
supNms = supNms if _isArrayLike(supNms) else [supNms] |
|
catIds = catIds if _isArrayLike(catIds) else [catIds] |
|
|
|
if len(catNms) == len(supNms) == len(catIds) == 0: |
|
cats = self.dataset['categories'] |
|
else: |
|
cats = self.dataset['categories'] |
|
cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] |
|
cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] |
|
cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] |
|
ids = [cat['id'] for cat in cats] |
|
return ids |
|
|
|
def getImgIds(self, imgIds=[], catIds=[]): |
|
''' |
|
Get img ids that satisfy given filter conditions. |
|
:param imgIds (int array) : get imgs for given ids |
|
:param catIds (int array) : get imgs with all given cats |
|
:return: ids (int array) : integer array of img ids |
|
''' |
|
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] |
|
catIds = catIds if _isArrayLike(catIds) else [catIds] |
|
|
|
if len(imgIds) == len(catIds) == 0: |
|
ids = self.imgs.keys() |
|
else: |
|
ids = set(imgIds) |
|
for i, catId in enumerate(catIds): |
|
if i == 0 and len(ids) == 0: |
|
ids = set(self.catToImgs[catId]) |
|
else: |
|
ids &= set(self.catToImgs[catId]) |
|
return list(ids) |
|
|
|
def loadAnns(self, ids=[]): |
|
""" |
|
Load anns with the specified ids. |
|
:param ids (int array) : integer ids specifying anns |
|
:return: anns (object array) : loaded ann objects |
|
""" |
|
if _isArrayLike(ids): |
|
return [self.anns[id] for id in ids] |
|
elif type(ids) == int: |
|
return [self.anns[ids]] |
|
|
|
def loadCats(self, ids=[]): |
|
""" |
|
Load cats with the specified ids. |
|
:param ids (int array) : integer ids specifying cats |
|
:return: cats (object array) : loaded cat objects |
|
""" |
|
if _isArrayLike(ids): |
|
return [self.cats[id] for id in ids] |
|
elif type(ids) == int: |
|
return [self.cats[ids]] |
|
|
|
def loadImgs(self, ids=[]): |
|
""" |
|
Load anns with the specified ids. |
|
:param ids (int array) : integer ids specifying img |
|
:return: imgs (object array) : loaded img objects |
|
""" |
|
if _isArrayLike(ids): |
|
return [self.imgs[id] for id in ids] |
|
elif type(ids) == int: |
|
return [self.imgs[ids]] |
|
|
|
def showAnns(self, anns, draw_bbox=False): |
|
""" |
|
Display the specified annotations. |
|
:param anns (array of object): annotations to display |
|
:return: None |
|
""" |
|
if len(anns) == 0: |
|
return 0 |
|
if 'segmentation' in anns[0] or 'keypoints' in anns[0]: |
|
datasetType = 'instances' |
|
elif 'caption' in anns[0]: |
|
datasetType = 'captions' |
|
else: |
|
raise Exception('datasetType not supported') |
|
if datasetType == 'instances': |
|
import matplotlib.pyplot as plt |
|
from matplotlib.collections import PatchCollection |
|
from matplotlib.patches import Polygon |
|
|
|
ax = plt.gca() |
|
ax.set_autoscale_on(False) |
|
polygons = [] |
|
color = [] |
|
for ann in anns: |
|
c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] |
|
if 'segmentation' in ann: |
|
if type(ann['segmentation']) == list: |
|
|
|
for seg in ann['segmentation']: |
|
poly = np.array(seg).reshape((int(len(seg)/2), 2)) |
|
polygons.append(Polygon(poly)) |
|
color.append(c) |
|
else: |
|
|
|
t = self.imgs[ann['image_id']] |
|
if type(ann['segmentation']['counts']) == list: |
|
rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) |
|
else: |
|
rle = [ann['segmentation']] |
|
m = maskUtils.decode(rle) |
|
img = np.ones( (m.shape[0], m.shape[1], 3) ) |
|
if ann['iscrowd'] == 1: |
|
color_mask = np.array([2.0,166.0,101.0])/255 |
|
if ann['iscrowd'] == 0: |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
for i in range(3): |
|
img[:,:,i] = color_mask[i] |
|
ax.imshow(np.dstack( (img, m*0.5) )) |
|
if 'keypoints' in ann and type(ann['keypoints']) == list: |
|
|
|
sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 |
|
kp = np.array(ann['keypoints']) |
|
x = kp[0::3] |
|
y = kp[1::3] |
|
v = kp[2::3] |
|
for sk in sks: |
|
if np.all(v[sk]>0): |
|
plt.plot(x[sk],y[sk], linewidth=3, color=c) |
|
plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) |
|
plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) |
|
|
|
if draw_bbox: |
|
[bbox_x, bbox_y, bbox_w, bbox_h] = ann['bbox'] |
|
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] |
|
np_poly = np.array(poly).reshape((4,2)) |
|
polygons.append(Polygon(np_poly)) |
|
color.append(c) |
|
|
|
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) |
|
ax.add_collection(p) |
|
p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) |
|
ax.add_collection(p) |
|
elif datasetType == 'captions': |
|
for ann in anns: |
|
print(ann['caption']) |
|
|
|
def loadRes(self, resFile): |
|
""" |
|
Load result file and return a result api object. |
|
:param resFile (str) : file name of result file |
|
:return: res (obj) : result api object |
|
""" |
|
res = COCO() |
|
res.dataset['images'] = [img for img in self.dataset['images']] |
|
|
|
print('Loading and preparing results...') |
|
tic = time.time() |
|
if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode): |
|
with open(resFile) as f: |
|
anns = json.load(f) |
|
elif type(resFile) == np.ndarray: |
|
anns = self.loadNumpyAnnotations(resFile) |
|
else: |
|
anns = resFile |
|
assert type(anns) == list, 'results in not an array of objects' |
|
annsImgIds = [ann['image_id'] for ann in anns] |
|
assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ |
|
'Results do not correspond to current coco set' |
|
if 'caption' in anns[0]: |
|
imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) |
|
res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] |
|
for id, ann in enumerate(anns): |
|
ann['id'] = id+1 |
|
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: |
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) |
|
for id, ann in enumerate(anns): |
|
bb = ann['bbox'] |
|
x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] |
|
if not 'segmentation' in ann: |
|
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] |
|
ann['area'] = bb[2]*bb[3] |
|
ann['id'] = id+1 |
|
ann['iscrowd'] = 0 |
|
elif 'segmentation' in anns[0]: |
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) |
|
for id, ann in enumerate(anns): |
|
|
|
ann['area'] = maskUtils.area(ann['segmentation']) |
|
if not 'bbox' in ann: |
|
ann['bbox'] = maskUtils.toBbox(ann['segmentation']) |
|
ann['id'] = id+1 |
|
ann['iscrowd'] = 0 |
|
elif 'keypoints' in anns[0]: |
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) |
|
for id, ann in enumerate(anns): |
|
s = ann['keypoints'] |
|
x = s[0::3] |
|
y = s[1::3] |
|
x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) |
|
ann['area'] = (x1-x0)*(y1-y0) |
|
ann['id'] = id + 1 |
|
ann['bbox'] = [x0,y0,x1-x0,y1-y0] |
|
print('DONE (t={:0.2f}s)'.format(time.time()- tic)) |
|
|
|
res.dataset['annotations'] = anns |
|
res.createIndex() |
|
return res |
|
|
|
def download(self, tarDir = None, imgIds = [] ): |
|
''' |
|
Download COCO images from mscoco.org server. |
|
:param tarDir (str): COCO results directory name |
|
imgIds (list): images to be downloaded |
|
:return: |
|
''' |
|
if tarDir is None: |
|
print('Please specify target directory') |
|
return -1 |
|
if len(imgIds) == 0: |
|
imgs = self.imgs.values() |
|
else: |
|
imgs = self.loadImgs(imgIds) |
|
N = len(imgs) |
|
if not os.path.exists(tarDir): |
|
os.makedirs(tarDir) |
|
for i, img in enumerate(imgs): |
|
tic = time.time() |
|
fname = os.path.join(tarDir, img['file_name']) |
|
if not os.path.exists(fname): |
|
urlretrieve(img['coco_url'], fname) |
|
print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) |
|
|
|
def loadNumpyAnnotations(self, data): |
|
""" |
|
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} |
|
:param data (numpy.ndarray) |
|
:return: annotations (python nested list) |
|
""" |
|
print('Converting ndarray to lists...') |
|
assert(type(data) == np.ndarray) |
|
print(data.shape) |
|
assert(data.shape[1] == 7) |
|
N = data.shape[0] |
|
ann = [] |
|
for i in range(N): |
|
if i % 1000000 == 0: |
|
print('{}/{}'.format(i,N)) |
|
ann += [{ |
|
'image_id' : int(data[i, 0]), |
|
'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], |
|
'score' : data[i, 5], |
|
'category_id': int(data[i, 6]), |
|
}] |
|
return ann |
|
|
|
def annToRLE(self, ann): |
|
""" |
|
Convert annotation which can be polygons, uncompressed RLE to RLE. |
|
:return: binary mask (numpy 2D array) |
|
""" |
|
t = self.imgs[ann['image_id']] |
|
h, w = t['height'], t['width'] |
|
segm = ann['segmentation'] |
|
if type(segm) == list: |
|
|
|
|
|
rles = maskUtils.frPyObjects(segm, h, w) |
|
rle = maskUtils.merge(rles) |
|
elif type(segm['counts']) == list: |
|
|
|
rle = maskUtils.frPyObjects(segm, h, w) |
|
else: |
|
|
|
rle = ann['segmentation'] |
|
return rle |
|
|
|
def annToMask(self, ann): |
|
""" |
|
Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. |
|
:return: binary mask (numpy 2D array) |
|
""" |
|
rle = self.annToRLE(ann) |
|
m = maskUtils.decode(rle) |
|
return m |
|
|